In
theoretical physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ...
, unparticle physics is a speculative theory that conjectures a form of
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
that cannot be explained in terms of
particles using the
Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of particle physics, because its components are
scale invariant.
Howard Georgi proposed this theory in two 2007 papers, "Unparticle Physics"
and "Another Odd Thing About Unparticle Physics". His papers were followed by further work by other researchers into the properties and phenomenology of unparticle physics and its potential impact on
particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
,
astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
,
cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
,
CP violation,
lepton
In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
flavour violation,
muon decay,
neutrino oscillations, and
supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
.
Background
All
particles exist in states that may be characterized by a certain
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
,
momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
and
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
. In most of the
Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of particle physics, particles of the same type cannot exist in another state with all these properties scaled up or down by a common factor –
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, for example, always have the same mass regardless of their energy or momentum. But this is not always the case: massless particles, such as
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, can exist with their properties scaled equally. This immunity to scaling is called "scale invariance".
The idea of unparticles comes from conjecturing that there may be "stuff" that does not necessarily have zero mass but is still scale-invariant, with the same physics regardless of a change of length (or equivalently energy). This stuff is unlike particles, and described as unparticle. The unparticle stuff is equivalent to particles with a continuous spectrum of mass.
Such unparticle stuff has not been observed, which suggests that if it exists, it must couple with normal matter weakly at observable energies. Since the
Large Hadron Collider
The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ...
(LHC) team announced it will begin probing a higher energy frontier in 2009, some theoretical physicists have begun to consider the properties of unparticle stuff and how it may appear in LHC experiments. One of the great hopes for the LHC is that it might come up with some discoveries that will help us update or replace our best description of the particles that make up matter and the forces that glue them together.
Properties
Unparticles would have properties in common with
neutrino
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s, which have almost zero mass and are therefore nearly
scale invariant. Neutrinos barely interact with matter – most of the time physicists can infer their presence only by calculating the "missing" energy and momentum after an interaction. By looking at the same interaction many times, a
probability distribution
In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
is built up that tells more specifically how many and what sort of neutrinos are involved. They couple very weakly to ordinary matter at low energies, and the effect of the coupling increases as the energy increases.
A similar technique could be used to search for evidence of unparticles. According to scale invariance, a distribution containing unparticles would become apparent because it would resemble a distribution for a fractional number of massless particles.
This scale invariant sector would interact very weakly with the rest of the Standard Model, making it possible to observe evidence for unparticle stuff, if it exists. The unparticle theory is a high-energy theory that contains both Standard Model fields and
Banks–Zaks fields, which have scale-invariant behavior at an infrared point. The two fields can interact through the interactions of ordinary particles if the energy of the interaction is sufficiently high.
These particle interactions would appear to have "missing" energy and momentum that would not be detected by the experimental apparatus. Certain distinct distributions of missing energy would signify the production of unparticle stuff. If such signatures are not observed, bounds on the model can be set and refined.
Experimental indications
Unparticle physics has been proposed as an explanation for anomalies in superconducting cuprate materials, where the charge measured by
ARPES appears to exceed predictions from
Luttinger's theorem for the quantity of electrons.
References
External links
*
*
*
*
*
*
{{DEFAULTSORT:Unparticle Physics
Particle physics
Theoretical physics
Fringe physics