In
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
, a unit of a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
is an
invertible element
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
where is the
multiplicative identity; the element is unique for this property and is called the
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rat ...
of . The set of units of forms a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
under multiplication, called the group of units or unit group of . Other notations for the unit group are , , and (from the German term ).
Less commonly, the term ''unit'' is sometimes used to refer to the element of the ring, in expressions like ''ring with a unit'' or ''unit ring'', and also
unit matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere.
Terminology and notation
The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
. Because of this ambiguity, is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a
rng.
Examples
The multiplicative identity and its additive inverse are always units. More generally, any
root of unity
In mathematics, a root of unity, occasionally called a Abraham de Moivre, de Moivre number, is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematic ...
in a ring is a unit: if , then is a multiplicative inverse of .
In a
nonzero ring, the
element 0 is not a unit, so is not closed under addition.
A nonzero ring in which every nonzero element is a unit (that is, ) is called a
division ring
In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
(or a skew-field). A commutative division ring is called a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
. For example, the unit group of the field of
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s is .
Integer ring
In the ring of
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
, the only units are and .
In the ring of
integers modulo , the units are the congruence classes represented by integers
coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
to . They constitute the
multiplicative group of integers modulo .
Ring of integers of a number field
In the ring obtained by adjoining the
quadratic integer
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form
:
with and (usual) integers. When algebra ...
to , one has , so is a unit, and so are its powers, so has infinitely many units.
More generally, for the
ring of integers in a
number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
,
Dirichlet's unit theorem
In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator is a pos ...
states that is isomorphic to the group
where
is the (finite, cyclic) group of roots of unity in and , the
rank
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as:
Level or position in a hierarchical organization
* Academic rank
* Diplomatic rank
* Hierarchy
* ...
of the unit group, is
where
are the number of real embeddings and the number of pairs of complex embeddings of , respectively.
This recovers the example: The unit group of (the ring of integers of) a
real quadratic field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers.
Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
is infinite of rank 1, since
.
Polynomials and power series
For a commutative ring , the units of the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
are the polynomials
such that
is a unit in and the remaining coefficients
are
nilpotent
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0.
The term was introduced by Benjamin Peirce in the context of his work on the cla ...
, i.e., satisfy
for some ''N''.
In particular, if is a
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
**Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
* Do ...
, then the units of are the units of .
The units of the
power series ring
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sum ...
are the power series
such that
is a unit in .
Matrix rings
The unit group of the ring of
matrices over a ring is the group of
invertible matrices
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that
:\mathbf = \mathbf = \mathbf_n \
where denotes the -by- identity matrix and the multiplicati ...
. For a commutative ring , an element of is invertible if and only if the
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
of is invertible in . In that case, can be given explicitly in terms of the
adjugate matrix
In linear algebra, the adjugate or classical adjoint of a square matrix is the transpose of its cofactor matrix and is denoted by . It is also occasionally known as adjunct matrix, or "adjoint", though the latter today normally refers to a differe ...
.
In general
For elements and in a ring , if
is invertible, then
is invertible with inverse
; this formula can be guessed, but not proved, by the following calculation in a ring of noncommutative power series:
See
Hua's identity
In algebra, Hua's identity named after Hua Luogeng, states that for any elements ''a'', ''b'' in a division ring,
a - \left(a^ + \left(b^ - a\right)^\right)^ = aba
whenever ab \ne 0, 1. Replacing b with -b^ gives another equivalent form of the ide ...
for similar results.
Group of units
A
commutative ring is a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic n ...
if is a
maximal ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
.
As it turns out, if is an ideal, then it is necessarily a
maximal ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
and ''R'' is
local
Local may refer to:
Geography and transportation
* Local (train), a train serving local traffic demand
* Local, Missouri, a community in the United States
* Local government, a form of public administration, usually the lowest tier of administrat ...
since a
maximal ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals c ...
is disjoint from .
If is a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
, then is a
cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order
.
Every
ring homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is:
:addition preser ...
induces a
group homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that
: h(u*v) = h(u) \cdot h(v)
wh ...
, since maps units to units. In fact, the formation of the unit group defines a
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from the
category of rings
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of ring ...
to the
category of groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
Relation to other categories
There a ...
. This functor has a
left adjoint
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
which is the integral
group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the giv ...
construction.
[Exercise 10 in § 2.2. of ]
The
group scheme
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have ...
is isomorphic to the
multiplicative group scheme over any base, so for any commutative ring , the groups
and
are canonically isomorphic to
. Note that the functor
(that is,
) is representable in the sense:
for commutative rings (this for instance follows from the aforementioned adjoint relation with the group ring construction). Explicitly this means that there is a natural bijection between the set of the ring homomorphisms
and the set of unit elements of (in contrast,