In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, 2
k1 polytope is a
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude ver ...
in ''n'' dimensions (''n'' = ''k''+4) constructed from the
En Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
. The family was named by their
Coxeter symbol
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington ...
as 2
k1 by its bifurcating
Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. It can be named by an
extended Schläfli symbol
Extension, extend or extended may refer to:
Mathematics
Logic or set theory
* Axiom of extensionality
* Extensible cardinal
* Extension (model theory)
* Extension (predicate logic), the set of tuples of values that satisfy the predicate
* Ex ...
.
Family members
The family starts uniquely as
6-polytope
In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.
Definition
A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. ...
s, but can be extended backwards to include the 5-
orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
(
pentacross
In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
It has two constructed forms, the first being regular wi ...
) in 5-dimensions, and the 4-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
(
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
) in 4-dimensions.
Each polytope is constructed from (n-1)-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and 2
k-1,1 (n-1)-polytope facets, each has a
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
as an (n-1)-
demicube, '.
The sequence ends with k=6 (n=10), as an infinite hyperbolic tessellation of 9-space.
The complete family of 2
k1 polytope polytopes are:
#
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
: 2
01, (5
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
cells)
#
Pentacross
In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
It has two constructed forms, the first being regular wi ...
: 2
11, (32
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
(2
01) facets)
#
221, (72 5-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and 27 5-
orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
(2
11) facets)
#
231, (576 6-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and 56 2
21 facets)
#
241, (17280 7-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and 240 2
31 facets)
#
251, tessellates Euclidean 8-space (∞ 8-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and ∞ 2
41 facets)
#
261, tessellates hyperbolic 9-space (∞ 9-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
and ∞ 2
51 facets)
Elements
See also
*
k21 polytope family
*
1k2 polytope family
References
*
Alicia Boole Stott
Alicia Boole Stott (8 June 1860 – 17 December 1940) was an Irish mathematician. Despite never holding an academic position, she made a number of valuable contributions to the field, receiving an honorary doctorate from the University of Gron ...
''Geometrical deduction of semiregular from regular polytopes and space fillings'', Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
** Stott, A. B. "Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings." Verhandelingen der Koninklijke Akad. Wetenschappen Amsterdam 11, 3-24, 1910.
** Alicia Boole Stott, "Geometrical deduction of semiregular from regular polytopes and space fillings," Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, (eerste sectie), Vol. 11, No. 1, pp. 1–24 plus 3 plates, 1910.
** Stott, A. B. 1910. "Geometrical Deduction of Semiregular from Regular Polytopes and Space Fillings." Verhandelingen der Koninklijke Akad. Wetenschappen Amsterdam
* Schoute, P. H., Analytical treatment of the polytopes regularly derived from the regular polytopes, ''Ver. der Koninklijke Akad. van Wetenschappen te Amsterdam'' (eerstie sectie), vol 11.5, 1913.
*
H. S. M. Coxeter: Regular and Semi-Regular Polytopes, Part I, Mathematische Zeitschrift, Springer, Berlin, 1940
*
N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
* H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part II, Mathematische Zeitschrift, Springer, Berlin, 1985
* H.S.M. Coxeter: Regular and Semi-Regular Polytopes, Part III, Mathematische Zeitschrift, Springer, Berlin, 1988
External links
PolyGloss v0.05: Gosset figures (Gossetoctotope)
{{Honeycombs
Polytopes