HOME

TheInfoList



OR:

Type Ib and Type Ic supernovae are categories of
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e that are caused by the
stellar core A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of h ...
collapse Collapse or its variants may refer to: Concepts * Collapse (structural) * Collapse (topology), a mathematical concept * Collapsing manifold * Collapse, the action of collapsing or telescoping objects * Collapsing user interface elements ** ...
of massive stars. These stars have shed or been stripped of their outer envelope of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
, and, when compared to the spectrum of Type Ia supernovae, they lack the
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identi ...
of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.


Spectra

When a
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
is observed, it can be categorized in the MinkowskiZwicky supernova classification scheme based upon the
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identi ...
s that appear in its
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
. A supernova is first categorized as either a Type I or Type II, then subcategorized based on more specific traits. Supernovae belonging to the general category Type I lack
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
lines in their spectra; in contrast to Type II supernovae which do display lines of hydrogen. The Type I category is subdivided into Type Ia, Type Ib and Type Ic. Type Ib/Ic supernovae are distinguished from Type Ia by the lack of an
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identi ...
of singly ionized
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
at a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
of 635.5 
nanometre 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re, ...
s. As Type Ib and Ic supernovae age, they also display lines from elements such as
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well ...
,
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
. In contrast, Type Ia spectra become dominated by lines of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in fr ...
. Type Ic supernovae are distinguished from Type Ib in that the former also lack lines of
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. It ...
at 587.6 nm.


Formation

Prior to becoming a supernova, an evolved massive star is organized like an onion, with layers of different elements undergoing fusion. The outermost layer consists of hydrogen, followed by helium, carbon, oxygen, and so forth. Thus when the outer envelope of hydrogen is shed, this exposes the next layer that consists primarily of helium (mixed with other elements). This can occur when a very hot, massive star reaches a point in its evolution when significant mass loss is occurring from its stellar wind. Highly massive stars (with 25 or more times the mass of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
) can lose up to 10−5
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass o ...
es () each year—the equivalent of every 100,000 years. Type Ib and Ic supernovae are hypothesized to have been produced by core collapse of massive stars that have lost their outer layer of hydrogen and helium, either via winds or mass transfer to a companion. The progenitors of Types Ib and Ic have lost most of their outer envelopes due to strong
stellar wind A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric. ...
s or else from interaction with a close companion of about . Rapid mass loss can occur in the case of a
Wolf–Rayet star Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface ...
, and these massive objects show a spectrum that is lacking in hydrogen. Type Ib progenitors have ejected most of the hydrogen in their outer atmospheres, while Type Ic progenitors have lost both the hydrogen and helium shells; in other words, Type Ic have lost more of their envelope (i.e., much of the helium layer) than the progenitors of Type Ib. In other respects, however, the underlying mechanism behind Type Ib and Ic supernovae is similar to that of a Type II supernova, thus placing Types Ib and Ic between Type Ia and Type II. Because of their similarity, Type Ib and Ic supernovae are sometimes collectively called Type Ibc supernovae. There is some evidence that a small fraction of the Type Ic supernovae may be the progenitors of
gamma ray bursts In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
(GRBs); in particular, type Ic supernovae that have broad spectral lines corresponding to high-velocity outflows are thought to be strongly associated with GRBs. However, it is also hypothesized that any hydrogen-stripped Type Ib or Ic supernova could be a GRB, dependent upon the geometry of the explosion. In any case, astronomers believe that most Type Ib, and probably Type Ic as well, result from core collapse in stripped, massive stars, rather than from the thermonuclear runaway of
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes f ...
s. As they are formed from rare, very massive stars, the rate of Type Ib and Ic supernova occurrence is much lower than the corresponding rate for Type II supernovae. They normally occur in regions of new star formation, and are extremely rare in
elliptical galaxies An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the four main classes of galaxy described by Edwin Hubble in his Hubble sequence and 1936 work ''The Real ...
. Because they share a similar operating mechanism, Type Ibc and the various Type II supernovae are collectively called core-collapse supernovae. In particular, Type Ibc may be referred to as ''stripped core-collapse supernovae''.


Light curves

The
light curve In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular freq ...
s (a plot of luminosity versus time) of Type Ib supernovae vary in form, but in some cases can be nearly identical to those of Type Ia supernovae. However, Type Ib light curves may peak at lower luminosity and may be redder. In the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
portion of the spectrum, the light curve of a Type Ib supernova is similar to a Type II-L light curve. Type Ib supernovae usually have slower decline rates for the spectral curves than Ic. Type Ia supernovae light curves are useful for measuring distances on a cosmological scale. That is, they serve as
standard candle The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible o ...
s. However, due to the similarity of the spectra of Type Ib and Ic supernovae, the latter can form a source of contamination of supernova surveys and must be carefully removed from the observed samples before making distance estimates.


See also

* Type Ia supernova * Type II supernova


References


External links


List of all known Type Ib and Ic supernovae
a
The Open Supernova Catalog
{{good article Type 1b and 1c Supernova