HOME

TheInfoList



OR:

Tyer's Electric Train Tablet system is a form of
railway signalling Railway signalling (), also called railroad signaling (), is a system used to control the movement of railway traffic. Trains move on fixed rails, making them uniquely susceptible to collision. This susceptibility is exacerbated by the enormo ...
for single line railways used in several countries; it was first devised in Great Britain by engineer Edward Tyer after the
Thorpe rail accident The Thorpe rail accident occurred on 10 September 1874, when two trains were involved in a head-on collision at Thorpe St Andrew in the English county of Norfolk. The accident occurred on what was then a single-track rail line between Norwich r ...
of 1874, which left 21 people dead. It was used in New Zealand for close to 100 years until June 1994. The system used a hard disk called a ''tablet'', a form of token. The purpose of the system was to use the tablet as a physical guarantee to the traincrew that their train had exclusive right of way on the single-line section. Without it, they could not proceed beyond the section signal which protected entry to the next section of the single line. With advances in electrical locking of the
lever frame Mechanical railway signalling installations rely on lever frames for their operation to interlock the signals, track locks and points to allow the safe operation of trains in the area the signals control. Usually located in the signal box, the ...
within the signal box, the tablet instrument also electrically locked the section signal lever. That was marked with a white stripe on the red background.


Construction

An instrument was placed at each end of the single-track section that they were to control. They were connected together electrically in such a way that operation of one would depend on operations carried out using the other. There were various incarnations of instruments developed by Tyer & Co. Below are the more commonly found ones: The Tyer's no. 7 tablet instrument consists of a wooden case, on top of which is a metal slide, a switch plunger, a bell plunger and an electric current indicator. On the front is an indicator which may show any of three indications: "Line Closed"; "Train Approaching" and "Train on Line". Below this there is a second slide, which has three positions: fully home, withdrawn half way, and fully withdrawn. The three indications correspond to the three positions of the slide. The case contains several tablets; they are removed from the instrument using the bottom slide, and replaced using the top slide. The instrument was so constructed that if a tablet had been withdrawn from either instrument of a pair, no further tablets could be withdrawn until the withdrawn tablet had been placed either in the other instrument, or in the same instrument from which it had been withdrawn. The Tyer's no. 6 tablet instrument is cast iron framed that has a movable drawer at the front which issues and receives the tablets. On the left hand side is a lever to reseat the tablet when it is replaced into the magazine. It has wooden side cheeks to access the complicated mechanism and a tombstone shaped wooden case on the top which houses the bell plunger, commutator and the tablet indicators for up and down trains. At the very top was the
galvanometer A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvan ...
. The signalling bell associated with the machine is separate so could be located on the block shelf or wall mounted above the instrument.


Tablets

Tablets are in the form of a disc made of metal or fibre (with a gunmetal weight at the top of the magazine), engraved with the names of the stations between which it is valid, and also provided with notches (also called configurations) or other indentations to ensure that it would fit only one pair of instruments. They were often painted in distinctive colours as an additional visual identification in areas where consecutive sections could each be controlled using the same type of instrument. The diameter of the tablets varied between the different patterns of instrument: those for the No 1 were the largest, the smallest were for the No 5 and No 7, whilst the Nos 2,3,4 and 6 all used tablets about in diameter.


Operation

The system required each station at the end of each section to be staffed; the staff member would communicate with the staff member at the other end of the section with a bell code to release a tablet. To release a tablet at station A to send a train to station B: * Both machines must be in a closed state * Operator at station A sends a bell code to station B asking if line is clear for the train * If clear, operator at station B will repeat the bell code to acknowledge * Station A operator holds down the bell plunger * Station B operator presses his/her switch plunger with one hand, and with the other pulls out the bottom slide half-way; the instrument now shows a "Train Approaching" indication * Station B operator holds down the bell plunger * Station A operator presses his/her switch plunger with one hand, and with the other pulls the bottom slide to its full extent; the instrument now shows a "Train on Line" indication and releases a tablet from the lower slide * Station A operator hands the tablet to the driver of the train heading to station B To close up each machine once the train has arrived at station B from station A: * The train driver hands the tablet to station B operator * Station B operator draws out the top slide, places the tablet in it, and closes the top and then the bottom slide; the instrument now shows a "Line Closed" indication * Station B operator sends a bell code to station A (denoting "Train out of Section"), holding the plunger down on the last stroke * Station A operator holds down his switch plunger, and closes the bottom slide; the instrument now shows a "Line Closed" indication * Both machines are now in closed states ready for the process to start again for another train The original Tyer's No. 1 instrument was a non-restoring design, as were the subsequent Nos 2 and 3 types. Once the tablet had been removed, it had to travel through the single line section and be replaced in its companion instrument to release the section again. This meant that should a train failure occur in the single line section or a shunt beyond station limits, the tablet ''had'' to travel to the receiving instrument by foot or horse. However, there was a way in which a shunt could be performed without removing the tablet. This was achieved by a very similar means of the
staff and ticket Staff may refer to: Pole * Staff, a weapon used in stick-fighting ** Quarterstaff, a European pole weapon * Staff of office, a pole that indicates a position * Staff (railway signalling), a token authorizing a locomotive driver to use a particular ...
working system. The later No 6 model however was a restoring design, which enabled the tablet to be placed back into the issuing instrument for shunting out of station limits. This increased flexibility and did not compromise safety. It also dispensed with the written authority in the staff and ticket system. Many No 1 instruments were modified with No 6 components to make them capable of restoring also.


Areas of use

The Great Western Railway used the Tyer's No. 7 electric train tablet instrument at several locations, including the Bampton to section. Sri Lanka Railways is currently using this system at several locations, including the Kelani Valley line between Maradana and Avissawella in the Colombo District. In Japan, carbon-copies of the Tyer's No. 7 tablet instrument were used on many single lines and some are still in use or kept on display at many rural stations. The Tyer's No. 6 tablet instrument was far more widespread in the UK and was adopted by most railway companies on single line installations. However, when the Tyer's No. 9 key token instrument was patented 40 years later in 1912, it began to replace the No. 6 due to it being compact, easier to use and had far fewer moving parts to service and repair. On Britain's national network the use of Tyer's system is now almost extinct, with most lengthy single track lines having been converted to more modern systems such as
Tokenless Block Signalling block systems enable the safe and efficient operation of railways by preventing collisions between trains. The basic principle is that a track is broken up into a series of sections or "blocks". Only one train may occupy a block at a ...
or
Radio Electronic Token Block Radio Electronic Token Block is a system of railway signalling used in the United Kingdom. It is a development of the physical token system for controlling traffic on single lines. The system is slightly similar to North American Direct Traffic ...
. However, , the Tyer Electric Token Block, using No 7 instruments and coloured perspex tablets, remains in use on the Stranraer Line, between and
Dunragit Dunragit ( gd, Dùn Reicheit) is a village on the A75, between Stranraer and Glenluce in Dumfries and Galloway, south-west Scotland. Dunragit is within the parish of Old Luce, in the traditional county of Wigtownshire. The modern village grew ...
.


Tyer's tablet working in New Zealand

Tyer's Tablet working using the No 7 system was used in New Zealand from 1901, as most lines apart from sections near the main centres were single-track. The tablets were generally of fibre, and were originally exchanged by hand using cane slings. Later (safer) mechanical exchangers were used. The Rakaia railway accident of 1899 had exposed the need for improvements to signalling and train braking. Single-track sections of the
North Island Main Trunk The North Island Main Trunk (NIMT) is the main railway line in the North Island of New Zealand, connecting the capital city Wellington with the country's largest city, Auckland. The line is long, built to the New Zealand rail gauge of and se ...
between Auckland and Wellington were controlled by Tyer's No 7 system; most of the line was single-track. Each of the stations for the 94 tablet sections required three tablet porters who each worked a 56-hour week for continuous coverage. Hence each station (many in isolated locations) required at least four houses, for the stationmaster and three porters. From 1938 to 1966
Centralised Traffic Control Centralized traffic control (CTC) is a form of railway signalling that originated in North America. CTC consolidates train routing decisions that were previously carried out by local signal operators or the train crews themselves. The system cons ...
(C.T.C.) gradually replaced the Tablet system on the NIMT. The last tablet used on the New Zealand Railways was to allow train 1602 (Wellington – Masterton morning
Wairarapa Connection The Wairarapa Connection is a New Zealand interurban commuter rail service along the Wairarapa Line between Masterton, the largest town in the Wairarapa, and Wellington. It is operated by Wellington suburban operator Transdev (with KiwiRai ...
) to travel between Featherston and Masterton on the
Wairarapa Line The Wairarapa Line is a secondary railway line in the south-east of the North Island of New Zealand. The line runs for , connects the capital city Wellington with the Palmerston North - Gisborne Line at Woodville, via Lower Hutt, Upper Hutt ...
on Monday 4 July 1994. Even though the Masterton to Woodville tablet sections survived a few days longer, trains ran on a ''safe all'' where Train Control could allow a train to run without a tablet.


Heritage railways and museums

Today the tablet system lives on in many heritage railways and museums either as static / operational / interactive displays or as part of the heritage railway signalling system


Heritage railways

* Swanage Railway, Dorset *
Ferrymead Railway The Ferrymead Railway is a New Zealand heritage railway built upon the track formation of New Zealand's first public railway, from Ferrymead to Christchurch, which opened on 1 December 1863. On the opening of the line to Lyttelton on 9 December 1 ...
, Christchurch *
Silver Stream Railway Silver Stream Railway is a heritage railway at Silverstream in the Hutt Valley near Wellington, New Zealand. It regularly operates preserved New Zealand Railways Department locomotives along a restored section of the Hutt Valley Line (part of ...
, Wellington *
Glenbrook Vintage Railway The Glenbrook Vintage Railway (GVR) is a heritage steam railway in Glenbrook, New Zealand. The GVR is run by a trust board of three trustees elected and appointed from Railway Enthusiasts Society (RES) membership. The board appoints a general m ...
, Auckland * Kent & East Sussex Railway, Tenterden Town *
North Norfolk Railway The North Norfolk Railway (NNR) – also known as the "Poppy Line" – is a heritage steam railway in Norfolk, England, running between the towns of Sheringham and Holt. The North Norfolk Railway is owned and operated as a public limite ...
, Norfolk UK


Railway museums

* Carterton Community & Railway Museum,
Carterton railway station Carterton railway station is a suburban railway station serving Carterton, New Zealand. The station is located on the Wairarapa Line, north of and south of . The Wairarapa Connection serves the station several times daily with services ...
* Glenfinnan Station Museum *
Fell Engine Museum The Fell Locomotive Museum in Featherston, New Zealand, exhibits the only remaining steam-powered Fell railway locomotive in the world. From 1877, locomotive H 199 climbed up the Rimutaka Incline using John Barraclough Fell's unique method of ...
, Featherston * Kadugannawa railway museum, Sri Lanka


Other

*
New Zealand Railway and Locomotive Society The New Zealand Railway and Locomotive Society Inc is a society of railway enthusiasts, based in Wellington. It was incorporated in 1958. The society archives are in the ''Thomas McGavin Building'' on Ava railway station's former goods yard in t ...
Ava Archive *
Pahiatua Railcar Society The Pahiatua Railcar Society (PRS) is a society located in Pahiatua, New Zealand, dedicated to the restoration of railcars and other locomotives and rolling stock formerly operated by the New Zealand Railways Department. It is notable for posses ...
, Pahiatua Railway Station, New Zealand * Helensville Railway Station Trust, New Zealand * Papatoetoe Railway Station Preservation Trust, New Zealand * Taumarunui Rail Action Group, New Zealand * Ormondville Railway Station, New Zealand


Internal workings

Below are a few photographs of the internal workings. This particular instrument has had the electric line clear addition and restoring functions added at a later date. It also carries the original plates by the plunger and commutator which were often removed. Image:Tyer's No. 6 Tablet Instrument-4.JPG, Left side showing the tablet restoring lever, line clear release and the coils Image:Tyer's No. 6 Tablet Instrument-9.JPG, The top portion where the commutator and indicator mechanism and circuits are housed image:Tyer's No. 6 Tablet Instrument-8.JPG, Top view showing the indicator coils and part of the commutator mechanism image:Tyer's No. 6 Tablet Instrument-13.JPG, Detailed photograph of the commutator mechanism and the push rods that interact with the indicators Image:Tyer's No. 6 Tablet Instrument-3.JPG, The right side showing the tablet replacing mechanism and rods to the tablet status indicators


Accidents


Before tokens

* Menheniot accident 1873. The verbal order given to a train guard to depart in one direction was overheard by the guard of the train waiting to leave on the single line in the other direction; he mistakenly ordered his train to leave, resulting in a head-on collision.


After tokens

* Abermule * Oswestry: Head on collision on 18 January 1918. The drivers of both engines held the correct token, issued as they started their respective journeys. The electrical circuits linking the machines at either end were also used for telephones and, together with a possible line fault caused by bad weather, allowed the issue of two tokens at the same time.


References


Further reading

* * * * * *


External links

{{Commons category, Token instruments
Valley Signals
Railway signalling in the United Kingdom Railway signalling in New Zealand Railway signalling manufacturers