HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
and related branches of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a totally disconnected space is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
that has only singletons as
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the ''only'' connected proper subsets. An important example of a totally disconnected space is the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
, which is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to the set of ''p''-adic integers. Another example, playing a key role in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, is the field of ''p''-adic numbers.


Definition

A topological space X is totally disconnected if the connected components in X are the one-point sets. Analogously, a topological space X is totally path-disconnected if all path-components in X are the one-point sets. Another closely related notion is that of a totally separated space, i.e. a space where quasicomponents are singletons. That is, a topological space X is totally separated space if and only if for every x\in X, the intersection of all
clopen In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open set, open and closed set, closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but ...
neighborhoods of x is the singleton \. Equivalently, for each pair of distinct points x, y\in X, there is a pair of disjoint open neighborhoods U, V of x, y such that X= U\sqcup V. Every totally separated space is evidently totally disconnected but the converse is false even for
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
s. For instance, take X to be the Cantor's teepee, which is the
Knaster–Kuratowski fan In topology, a branch of mathematics, the Knaster–Kuratowski fan (named after Polish mathematicians Bronisław Knaster and Kazimierz Kuratowski) is a specific connected topological space with the property that the removal of a single point ...
with the apex removed. Then X is totally disconnected but its quasicomponents are not singletons. For
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
s the two notions (totally disconnected and totally separated) are equivalent. Unfortunately in the literature (for instance ), totally disconnected spaces are sometimes called hereditarily disconnected, while the terminology totally disconnected is used for totally separated spaces.


Examples

The following are examples of totally disconnected spaces: *
Discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
s * The
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s * The
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integ ...
s * The ''p''-adic numbers; more generally, all profinite groups are totally disconnected. * The
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
and the
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
* The
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are e ...
* The
Sorgenfrey line In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set \mathbb of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of inte ...
* Every Hausdorff space of
small inductive dimension In the mathematical field of topology, the inductive dimension of a topological space ''X'' is either of two values, the small inductive dimension ind(''X'') or the large inductive dimension Ind(''X''). These are based on the observation that, in ...
0 is totally disconnected * The Erdős space''2''\, \cap \, \mathbb^ is a totally disconnected Hausdorff space that does not have small inductive dimension 0. * Extremally disconnected Hausdorff spaces *
Stone space In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in ...
s * The
Knaster–Kuratowski fan In topology, a branch of mathematics, the Knaster–Kuratowski fan (named after Polish mathematicians Bronisław Knaster and Kazimierz Kuratowski) is a specific connected topological space with the property that the removal of a single point ...
provides an example of a connected space, such that the removal of a single point produces a totally disconnected space.


Properties

* Subspaces,
products Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
, and coproducts of totally disconnected spaces are totally disconnected. *Totally disconnected spaces are T1 spaces, since singletons are closed. *Continuous images of totally disconnected spaces are not necessarily totally disconnected, in fact, every
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
is a continuous image of the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
. *A locally compact Hausdorff space has
small inductive dimension In the mathematical field of topology, the inductive dimension of a topological space ''X'' is either of two values, the small inductive dimension ind(''X'') or the large inductive dimension Ind(''X''). These are based on the observation that, in ...
0 if and only if it is totally disconnected. *Every totally disconnected compact metric space is homeomorphic to a subset of a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
product of
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
s. *It is in general not true that every open set in a totally disconnected space is also closed. *It is in general not true that the closure of every open set in a totally disconnected space is open, i.e. not every totally disconnected Hausdorff space is extremally disconnected.


Constructing a totally disconnected quotient space of any given space

Let X be an arbitrary topological space. Let x\sim y if and only if y\in \mathrm(x) (where \mathrm(x) denotes the largest connected subset containing x). This is obviously an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
whose equivalence classes are the connected components of X. Endow X/ with the
quotient topology In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient t ...
, i.e. the
finest topology In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as th ...
making the map m:x\mapsto \mathrm(x) continuous. With a little bit of effort we can see that X/ is totally disconnected. In fact this space is not only ''some'' totally disconnected quotient but in a certain sense the ''biggest'': The following
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
holds: For any totally disconnected space Y and any continuous map f : X\rightarrow Y, there exists a ''unique'' continuous map \breve:(X/\sim)\rightarrow Y with f=\breve\circ m.


See also

*
Extremally disconnected space In mathematics, an extremally disconnected space is a topological space in which the closure of every open set is open. (The term "extremally disconnected" is correct, even though the word "extremally" does not appear in most dictionaries, and is so ...
* Totally disconnected group


References

* (reprint of the 1970 original, {{MR, 0264581) General topology Properties of topological spaces