HOME

TheInfoList



OR:

Three-phase AC railway electrification was used in Italy, Switzerland and the United States in the early twentieth century. Italy was the major user, from 1901 until 1976, although lines through two tunnels also used the system; the Simplon Tunnel between Switzerland and Italy from 1906 to 1930 (but not connected to the Italian system), and the
Cascade Tunnel The Cascade Tunnel refers to two railroad tunnels (original and its replacement) in the northwest United States, east of the Seattle metropolitan area in the Cascade Range of Washington, at Stevens Pass. It is approximately east of Everett, wit ...
of the Great Northern Railway in the United States from 1909 to 1939. The first standard gauge line was in Switzerland, from Burgdorf to Thun (), from 1899 to 1933.


Advantages

The system provides regenerative braking with the power fed back to the system, so is particularly suitable for mountain railways (provided the grid or another locomotive on the line can accept the power). The locomotives use three-phase induction motors. Lacking brushes and commutators, they require less maintenance. The early Italian and Swiss systems used a low frequency (16⅔ Hz), and a relatively low voltage (3,000 or 3,600 volts) compared with later AC systems.


Disadvantages

The overhead wiring, generally having two separate overhead lines and the rail for the third phase, was more complicated, and the low frequency used required a separate generation or conversion and distribution system. Train speed was restricted to one to four speeds, with two or four speeds obtained by pole-changing or cascade operation or both.


Historical systems

The following is a list of the railways that have used this method of electrification in the past: * The
Cascade Tunnel The Cascade Tunnel refers to two railroad tunnels (original and its replacement) in the northwest United States, east of the Seattle metropolitan area in the Cascade Range of Washington, at Stevens Pass. It is approximately east of Everett, wit ...
of the Great Northern Railway. * The Ferrovia della Valtellina in Italy. * The Giovi Railway between
Genoa Genoa ( ; it, Genova ; lij, Zêna ). is the capital of the Italian region of Liguria and the sixth-largest city in Italy. In 2015, 594,733 people lived within the city's administrative limits. As of the 2011 Italian census, the Province of ...
and Pontedecimo in Italy. * The Italian part of the Mont-Cenis line Turin–Modane. * Many other lines in Northern Italy. * The Santa Fe - Gergal line in Spain. *The
Burgdorf–Thun railway The Burgdorf–Thun railway is a railway line in Switzerland, which was built by the ''Burgdorf-Thun-Bahn'' (Burgdorf-Thun Railway, BTB). The line from Burgdorf via Konolfingen to was opened by the company in 1899 as the first electrified mainl ...
in Switzerland. * The Simplon Tunnel between Switzerland and Italy.


Current systems

The system is only used today for rack (mountain) railways, where the overhead wiring is less complicated and restrictions on the speeds available less important. Modern motors and their control systems avoid the fixed speeds of traditional systems, as they are built with solid-state converters. The four current such railways are * The Corcovado Rack Railway in
Rio de Janeiro Rio de Janeiro ( , , ; literally 'River of January'), or simply Rio, is the capital of the state of the same name, Brazil's third-most populous state, and the second-most populous city in Brazil, after São Paulo. Listed by the GaWC as a ...
Brazil. * The
Gornergratbahn The Gornergrat Railway (german: Gornergrat Bahn; GGB) is a mountain rack railway, located in the Swiss canton of Valais. It links the resort village of Zermatt, situated at above mean sea level, to the summit of the Gornergrat. The Gornergrat ...
in Switzerland. * The Jungfraubahn in Switzerland. * The
Petit train de la Rhune The Petit train de la Rhune or (in Basque) Larrungo tren ttipia is a metre gauge rack railway in France at the western end of the Pyrenees, in the Basque Country. It links the Col de Saint-Ignace, some to the east of Saint-Jean-de-Luz, to the s ...
in France, still using the original locomotives of 1912 All use standard frequency (50 Hz, or 60 Hz (Brazil)) rather than low frequency, using between 725 and 3,000 volts.


Voltage and frequency

This list shows the voltage and frequency used in various systems, historical and current. * Various, Siemens Factory Experiments 1892 * 200 V / 25 Hz Panama Canal 1915 * 350 V / 40 Hz Lugano Tramway 1895 * 460 V / 60 Hz Panama Canal Authority, date unknown * 500 V / ??Hz Ganz Factory Experiment 1896 * 550 V / 40 Hz
Gornergratbahn The Gornergrat Railway (german: Gornergrat Bahn; GGB) is a mountain rack railway, located in the Swiss canton of Valais. It links the resort village of Zermatt, situated at above mean sea level, to the summit of the Gornergrat. The Gornergrat ...
, at opening, 1898 * 600 V / 60 Hz
Taoyuan International Airport Skytrain Taoyuan International Airport Skytrain () is a people mover system that runs between the two passenger terminal buildings at the Taoyuan International Airport. The system consists of two parallel tracks, North and South, each providing bidirection ...
, at opening, 2003 * 600 V / 50 Hz
Bukit Panjang LRT line The Bukit Panjang LRT line (BPLRT) is a automated guideway transit line in Bukit Panjang, Singapore. The BPLRT is the only LRT line operated by SMRT Trains. As the name suggests, it serves 13 stations in the neighbourhood of Bukit Panjang and ...
, at opening, 1999 * 650 V / 50 Hz Zhujiang New Town APM System, at opening, 2010 * 725 V / 50 Hz Gornergratbahn, current * 750 V / 40 Hz
Burgdorf–Thun railway The Burgdorf–Thun railway is a railway line in Switzerland, which was built by the ''Burgdorf-Thun-Bahn'' (Burgdorf-Thun Railway, BTB). The line from Burgdorf via Konolfingen to was opened by the company in 1899 as the first electrified mainl ...
, 1899–1933 * 750 V / 40 Hz Hasle-Rüegsau–Langnau railway, 1919–1932 * 1,125 V / 50 Hz Jungfrau Railway * 3,000 V / 15 Hz Ferrovia della Valtellina 1902 - 1917 * 3,300 V / 16.7 Hz Galleria del Sempione, SBB 1906 - 1930 * 3,000 V / 15.8 Hz Valtellina FS 1917 - 1930 * 3,600 V / 16.7 Hz Valtellina FS 1930 - 1953 * 3,600 V / 16.7 Hz Genoa-Turin, Turin-Frejus-Modane Gallery (F) and other lines in Piedmont and Liguria from 1910 to 1976 * 3,600 V / 16.7 Hz Trento-Bolzano-Brennero, Bolzano-Merano FS 1929 - 1965 * 3,600 V / 16.7 Hz Genova-La Spezia e Fornovo FS 1926 - 1948 * 3,600 V / 16.7 Hz Sondrio-Tirano ( Ferrovia Alta Valtellina) * 5,200 V / 25 Hz Gergal-SantaFe FC Sur - Spagna * 6,600 V / 25 Hz Cascade Range, Great Northern Railway (U.S.), 1909 - 1927 * 7,000 V / 50 Hz Experiments, Torino-Bussoleno FS 1927 - 1928


Converter systems

This category does not cover railways with a single-phase (or DC) supply which is converted to three-phase on the locomotive or power car, ''e.g.'', most railway equipment from the 1990s and earlier using solid-state converters. The Kando system of the 1930s developed by Kálmán Kandó at the
Ganz Works The Ganz Works or Ganz ( or , ''Ganz companies'', formerly ''Ganz and Partner Iron Mill and Machine Factory'') was a group of companies operating between 1845 and 1949 in Budapest, Hungary. It was named after Ábrahám Ganz, the founder and the ...
, and used in Hungary and Italy, used
rotary phase converter A rotary phase converter, abbreviated RPC, is an electrical machine that converts power from one polyphase system to another, converting through rotary motion. Typically, single-phase electric power is used to produce three-phase electric power ...
s on the locomotive to convert the single-phase supply to three phases, as did the Phase-splitting system on the Norfolk and Western Railroad in the United States.


Locomotives

Usually, the locomotives had one, two, or four motors on the body chassis (not on the bogies), and did not require gearing. The induction motors are designed to run at a particular synchronous speed, and when they run above the synchronous speed downhill, power is fed back to the system. Pole changing and cascade (concatenation) working was used to allow two or four different speeds, and resistances (often
liquid rheostat A liquid rheostat or water rheostat or salt water rheostat is a type of variable resistor. This may be used as a dummy load or as a starting resistor for large slip ring motors. In the simplest form it consists of a tank containing brine or oth ...
s) were required for starting. In Italy freight locomotives used plain cascade with two speeds, ; while express locomotives used cascade combined with pole-changing, giving four speeds, 37, 50, 75 and 100 km/h (23, 31, 46 and 62 mph). With the use of 3,000 or 3,600 volts at 16⅔ (16.7) Hz, the supply could be fed directly to the motor without an onboard transformer. Generally, the motor(s) fed a single axle, with other wheels linked by connecting rods, as the induction motor is sensitive to speed variations and with non-linked motors on several axles the motors on worn wheels would do little or even no work as they would rotate faster. This motor characteristic led to a mishap in the Cascade Tunnel to a GN east-bound freight train with four electric locomotives, two on the head and two pushing. The two pushers suddenly lost power and the train gradually slowed to a stop, but the lead unit engineer was unaware that his train had stopped, and held the controller on the power position until the usual time to transit the tunnel had elapsed. Not seeing daylight, he finally shut down the locomotive, and found that the wheels of his stationary locomotive had ground through two-thirds of the rail web.


Overhead wiring

Generally two separate overhead wires are used, with the rail for the third phase, though occasionally three overhead wires are used. At junctions, crossovers and crossings the two lines must be kept apart, with a continuous supply to the locomotive, which must have two live conductors wherever it stops. Hence two collectors per overhead phase are used, but the possibility of bridging a dead section and causing a short circuit from the front collector of one phase to the back collector of the other phase must be avoided. The resistance of the rails used for the third phase or return is higher for AC than for DC due to " skin effect", but lower for the low frequency used than for industrial frequency. Losses are also increased, though not in the same proportion, as the impedance is largely reactive. The locomotive needs to pick up power from two (or three) overhead conductors. Early locomotives on the Italian State Railways used a wide
bow collector A bow collector is one of the three main devices used on tramcars to transfer electric current from the wires above to the tram below. While once very common in continental Europe, it was replaced by the pantograph or the trolley pole, itself o ...
which covered both wires but later locomotives used a wide pantograph with two collector bars, side by side. A three-phase system is also prone to larger lengthwise gaps between sections, owing to the complexity of two-wire overhead, and so a long pickup base is needed. In Italy this was achieved with the long bow collectors reaching right to the ends of the locomotive, or with a pair of pantographs, also mounted as far apart as possible. In the United States, a pair of trolley poles were used. They worked well with a maximum speed of . The dual conductor
pantograph A pantograph (, from their original use for copying writing) is a mechanical linkage connected in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical movements in a second pen. If a line dr ...
system is used on four mountain railways that continue to use three-phase power ( Corcovado Rack Railway in Rio de Janeiro, Brazil, Jungfraubahn and
Gornergratbahn The Gornergrat Railway (german: Gornergrat Bahn; GGB) is a mountain rack railway, located in the Swiss canton of Valais. It links the resort village of Zermatt, situated at above mean sea level, to the summit of the Gornergrat. The Gornergrat ...
in Switzerland and the
Petit train de la Rhune The Petit train de la Rhune or (in Basque) Larrungo tren ttipia is a metre gauge rack railway in France at the western end of the Pyrenees, in the Basque Country. It links the Col de Saint-Ignace, some to the east of Saint-Jean-de-Luz, to the s ...
in France).


See also

* Three-phase electric power * :Railway electrification system#Polyphase alternating current systems * :Three-phase AC locomotives


Footnotes


References

* * * * p. 98 * pp 412–3 & 423-5 * pp 542–3 (para 872) & pp 630–1 (para 919) * * * * p 347


External links

{{commons category-inline, Three-phase electrifications History of rail transport Electric rail transport *