HOME

TheInfoList



OR:

The thermosphere is the layer in the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing fo ...
directly above the mesosphere and below the
exosphere The exosphere ( grc, ἔξω "outside, external, beyond", grc, σφαῖρα "sphere") is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the densi ...
. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the thermosphere thus constitutes the larger part of the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
. Taking its name from the Greek θερμός (pronounced ''thermos'') meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to
molecular mass The molecular mass (''m'') is the mass of a given molecule: it is measured in daltons (Da or u). Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The related quant ...
(see
turbosphere The turbopause, also known as the homopause, marks the altitude in an atmosphere below which turbulent mixing dominates. Mathematically, it is defined as the point where the coefficient of Eddy diffusion is equal to the coefficient of molecular d ...
). Thermospheric
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
s increase with altitude due to absorption of highly energetic
solar radiation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
. Temperatures are highly dependent on solar activity, and can rise to or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consi ...
, although, by the judging criteria set for the definition of the
Kármán line The Kármán line (or von Kármán line ) is an attempt to define a boundary between Earth's atmosphere and outer space, and offers a specific definition set by the Fédération aéronautique internationale (FAI), an international record-keeping ...
(100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause. The highly attenuated gas in this layer can reach during the day. Despite the high temperature, an observer or object will experience low temperatures in the thermosphere, because the extremely low density of the gas (practically a hard
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
) is insufficient for the molecules to conduct heat. A normal
thermometer A thermometer is a device that measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer ...
will read significantly below , at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above , the density is so low that molecular interactions are too infrequent to permit the transmission of sound. The dynamics of the thermosphere are dominated by atmospheric tides, which are driven predominantly by diurnal heating. Atmospheric waves dissipate above this level because of collisions between the neutral gas and the ionospheric plasma. The thermosphere is uninhabited with the exception of the
International Space Station The International Space Station (ISS) is the largest Modular design, modular space station currently in low Earth orbit. It is a multinational collaborative project involving five participating space agencies: NASA (United States), Roscosmos ( ...
, which orbits the Earth within the middle of the thermosphere between and the Tiangong space station, which orbits between .


Neutral gas constituents

It is convenient to separate the atmospheric regions according to the two temperature minima at an altitude of about (the tropopause) and at about (the mesopause) (Figure 1). The thermosphere (or the upper atmosphere) is the height region above , while the region between the tropopause and the mesopause is the middle atmosphere (
stratosphere The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air h ...
and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of and causes the
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
layer. The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρA H  ≃ 1 kg/cm2 within a column of one square centimeter above the ground (with ρA = 1.29 kg/m3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height). Eighty percent of that mass is concentrated within the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. Fro ...
. The mass of the thermosphere above about is only 0.002% of the total mass. Therefore, no significant energetic feedback from the thermosphere to the lower atmospheric regions can be expected. Turbulence causes the air within the lower atmospheric regions below the turbopause at about to be a mixture of gases that does not change its composition. Its mean molecular weight is 29 g/mol with molecular oxygen (O2) and nitrogen (N2) as the two dominant constituents. Above the turbopause, however, diffusive separation of the various constituents is significant, so that each constituent follows its barometric height structure with a scale height inversely proportional to its molecular weight. The lighter constituents atomic oxygen (O), helium (He), and hydrogen (H) successively dominate above an altitude of about and vary with geographic location, time, and solar activity. The ratio N2/O which is a measure of the electron density at the ionospheric F region is highly affected by these variations. These changes follow from the diffusion of the minor constituents through the major gas component during dynamic processes. The thermosphere contains an appreciable concentration of elemental
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
located in a thick band that occurs at the edge of the mesosphere, above Earth's surface. The sodium has an average concentration of 400,000 atoms per cubic centimeter. This band is regularly replenished by sodium sublimating from incoming meteors. Astronomers have begun using this sodium band to create " guide stars" as part of the optical correction process in producing ultra-sharp ground-based observations.


Energy input


Energy budget

The thermospheric temperature can be determined from density observations as well as from direct satellite measurements. The temperature vs. altitude z in Fig. 1 can be simulated by the so-called
Bates Bates may refer to: Places * Bates, Arkansas, an unincorporated community * Bates, Illinois. an unincorporated community in Sangamon County * Bates, Michigan, a community in Grand Traverse County * Bates, New York, a hamlet in the town of Elli ...
profile: (1) T = T_\infty - (T_\infty- T_0) e^ with T the exospheric temperature above about 400 km altitude, To = 355 K, and zo = 120 km reference temperature and height, and s an empirical parameter depending on T and decreasing with T. That formula is derived from a simple equation of heat conduction. One estimates a total heat input of qo≃ 0.8 to 1.6 mW/m2 above zo = 120 km altitude. In order to obtain equilibrium conditions, that heat input qo above zo is lost to the lower atmospheric regions by heat conduction. The exospheric temperature T is a fair measurement of the solar XUV radiation. Since solar radio emission F at 10.7  cm wavelength is a good indicator of solar activity, one can apply the empirical formula for quiet magnetospheric conditions.Hedin, A.E., A revised thermospheric model based on the mass spectrometer and incoherent scatter data: MSIS-83 J. Geophys. Res., 88, 10170, 1983 (2) T_\infty \simeq 500 + 3.4 F_0 with T in K, Fo in 10−2 W m−2 Hz−1 (the Covington index) a value of F averaged over several solar cycles. The Covington index varies typically between 70 and 250 during a solar cycle, and never drops below about 50. Thus, T varies between about 740 and 1350 K. During very quiet magnetospheric conditions, the still continuously flowing magnetospheric energy input contributes by about 250  K to the residual temperature of 500  K in eq.(2). The rest of 250  K in eq.(2) can be attributed to atmospheric waves generated within the troposphere and dissipated within the lower thermosphere.


Solar XUV radiation

The solar X-ray and extreme ultraviolet radiation (XUV) at wavelengths < 170  nm is almost completely absorbed within the thermosphere. This radiation causes the various ionospheric layers as well as a temperature increase at these heights (Figure 1). While the solar visible light (380 to 780  nm) is nearly constant with the variability of not more than about 0.1% of the
solar constant The solar constant (''GSC'') is a flux density measuring mean solar electromagnetic radiation ( total solar irradiance) per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun (roughly the ...
, the solar XUV radiation is highly variable in time and space. For instance, X-ray bursts associated with solar flares can dramatically increase their intensity over preflare levels by many orders of magnitude over some time of tens of minutes. In the extreme ultraviolet, the Lyman α line at 121.6 nm represents an important source of ionization and dissociation at ionospheric D layer heights. During quiet periods of solar activity, it alone contains more energy than the rest of the XUV spectrum. Quasi-periodic changes of the order of 100% or greater, with periods of 27 days and 11 years, belong to the prominent variations of solar XUV radiation. However, irregular fluctuations over all time scales are present all the time. During the low solar activity, about half of the total energy input into the thermosphere is thought to be solar XUV radiation. That solar XUV energy input occurs only during daytime conditions, maximizing at the equator during equinox.


Solar wind

The second source of energy input into the thermosphere is solar wind energy which is transferred to the
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior d ...
by mechanisms that are not well understood. One possible way to transfer energy is via a hydrodynamic dynamo process. Solar wind particles penetrate the polar regions of the magnetosphere where the
geomagnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
lines are essentially vertically directed. An electric field is generated, directed from dawn to dusk. Along the last closed geomagnetic field lines with their footpoints within the
auroral An aurora (plural: auroras or aurorae), also commonly known as the polar lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of bri ...
zones, field-aligned electric currents can flow into the ionospheric dynamo region where they are closed by electric
Pedersen Pedersen () is a Danish and Norwegian patronymic surname, literally meaning "son of Peder". It is the fourth most common surname in Denmark, shared by about 3.4% of the population, and the sixth most common in Norway. It is of similar origin as the ...
and Hall currents.
Ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
ic losses of the Pedersen currents heat the lower thermosphere (see e.g., Magnetospheric electric convection field). Also, penetration of high energetic particles from the magnetosphere into the auroral regions enhance drastically the electric conductivity, further increasing the electric currents and thus Joule heating. During the quiet magnetospheric activity, the magnetosphere contributes perhaps by a quarter to the thermosphere's energy budget. This is about 250  K of the exospheric temperature in eq.(2). During the very large activity, however, this heat input can increase substantially, by a factor of four or more. That solar wind input occurs mainly in the auroral regions during both day and night.


Atmospheric waves

Two kinds of large-scale atmospheric waves within the lower atmosphere exist: internal waves with finite vertical wavelengths which can transport wave energy upward, and external waves with infinitely large wavelengths that cannot transport wave energy.Volland, H., "Atmospheric Tidal and Planetary Waves", Kluwer, Dordrecht, 1988 Atmospheric gravity waves and most of the atmospheric tides generated within the troposphere belong to the internal waves. Their density amplitudes increase exponentially with height so that at the mesopause these waves become turbulent and their energy is dissipated (similar to breaking of ocean waves at the coast), thus contributing to the heating of the thermosphere by about 250  K in eq.(2). On the other hand, the fundamental diurnal tide labeled (1, −2) which is most efficiently excited by solar irradiance is an external wave and plays only a marginal role within the lower and middle atmosphere. However, at thermospheric altitudes, it becomes the predominant wave. It drives the electric Sq-current within the ionospheric dynamo region between about 100 and 200  km height. Heating, predominately by tidal waves, occurs mainly at lower and middle latitudes. The variability of this heating depends on the meteorological conditions within the troposphere and middle atmosphere, and may not exceed about 50%.


Dynamics

Within the thermosphere above an altitude of about , all atmospheric waves successively become external waves, and no significant vertical wave structure is visible. The atmospheric wave modes degenerate to the spherical functions Pnm with m a meridional wave number and n the zonal wave number (m = 0: zonal mean flow; m = 1: diurnal tides; m = 2: semidiurnal tides; etc.). The thermosphere becomes a damped oscillator system with low-pass filter characteristics. This means that smaller-scale waves (greater numbers of (n,m)) and higher frequencies are suppressed in favor of large-scale waves and lower frequencies. If one considers very quiet magnetospheric disturbances and a constant mean exospheric temperature (averaged over the sphere), the observed temporal and spatial distribution of the exospheric temperature distribution can be described by a sum of spheric functions: (3) T(\varphi, \lambda, t) = T_\infty \ Here, it is φ latitude, λ longitude, and t time, ωa the
angular frequency In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit ti ...
of one year, ωd the angular frequency of one solar day, and τ = ωdt + λ the local time. ta = June 21 is the date of northern summer solstice, and τd = 15:00 is the local time of maximum diurnal temperature. The first term in (3) on the right is the global mean of the exospheric temperature (of the order of 1000  K). The second term ith P20 = 0.5(3 sin2(φ)−1)represents the heat surplus at lower latitudes and a corresponding heat deficit at higher latitudes (Fig. 2a). A thermal wind system develops with the wind toward the poles in the upper level and winds away from the poles in the lower level. The coefficient ΔT20 ≈ 0.004 is small because Joule heating in the aurora regions compensates that heat surplus even during quiet magnetospheric conditions. During disturbed conditions, however, that term becomes dominant, changing sign so that now heat surplus is transported from the poles to the equator. The third term (with P10 = sin φ) represents heat surplus on the summer hemisphere and is responsible for the transport of excess heat from the summer into the winter hemisphere (Fig. 2b). Its relative amplitude is of the order ΔT10 ≃ 0.13. The fourth term (with P11(φ) = cos φ) is the dominant diurnal wave (the tidal mode (1,−2)). It is responsible for the transport of excess heat from the daytime hemisphere into the nighttime hemisphere (Fig. 2d). Its relative amplitude is ΔT11≃ 0.15, thus on the order of 150 K. Additional terms (e.g., semiannual, semidiurnal terms, and higher-order terms) must be added to eq.(3). However, they are of minor importance. Corresponding sums can be developed for density, pressure, and the various gas constituents.von Zahn, U., et al., ESRO-4 model of global thermospheric composition and temperatures during low solar activity, Geophy. Res. Lett., ''4'', 33, 1977


Thermospheric storms

In contrast to solar XUV radiation, magnetospheric disturbances, indicated on the ground by geomagnetic variations, show an unpredictable impulsive character, from short periodic disturbances of the order of hours to long-standing giant storms of several days' duration. The reaction of the thermosphere to a large magnetospheric storm is called a thermospheric storm. Since the heat input into the thermosphere occurs at high latitudes (mainly into the auroral regions), the heat transport is represented by the term P20 in eq.(3) is reversed. Also, due to the impulsive form of the disturbance, higher-order terms are generated which, however, possess short decay times and thus quickly disappear. The sum of these modes determines the "travel time" of the disturbance to the lower latitudes, and thus the response time of the thermosphere with respect to the magnetospheric disturbance. Important for the development of an
ionospheric storm Ionospheric storms are storms which contain varying densities of energised electrons produced from the sun. They are categorised into positive and negative storms, where positive storms have a high density of electrons and negative storms contain a ...
is the increase of the ratio N2/O during a thermospheric storm at middle and higher latitude.Prölss, G.W., Density perturbations in the upper atmosphere caused by dissipation of solar wind energy, Surv. Geophys., ''32'', 101, 2011 An increase of N2 increases the loss process of the ionospheric plasma and causes therefore a decrease of the electron density within the ionospheric F-layer (negative ionospheric storm).


Climate change

A contraction of the thermosphere has been observed as a possible result in part due to increased carbon dioxide concentrations, the strongest cooling and contraction occurring in that layer during solar minimum. The most recent contraction in 2008–2009 was the largest such since at least 1967.


See also

* Aerial perspective * Aeronomy * Air (classical element) * Air glow * Airshed * Atmospheric dispersion modeling * Atmospheric electricity * Atmospheric Radiation Measurement Climate Research Facility (ARM) (in the U.S.) * Atmospheric stratification * Biosphere * Climate system ** Earth's energy budget * COSPAR international reference atmosphere (CIRA) * Environmental impact of aviation * Global dimming *
Historical temperature record The instrumental temperature record is a record of temperatures within Earth's climate based on direct, instrument-based measurements of air temperature and ocean temperature. Instrumental temperature records are distinguished from indirect rec ...
*
Hydrosphere The hydrosphere () is the combined mass of water found on, under, and above the surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to change in shape. This ...
* Hypermobility (travel) *
Kyoto Protocol The Kyoto Protocol was an international treaty which extended the 1992 United Nations Framework Convention on Climate Change (UNFCCC) that commits state parties to reduce greenhouse gas emissions, based on the scientific consensus that (part ...
*
Leaching (agriculture) In agriculture, leaching is the loss of water-soluble plant nutrients from the soil, due to rain and irrigation. Soil structure, crop planting, type and application rates of fertilizers, and other factors are taken into account to avoid excessi ...
*
Lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years ...
*
Reference atmospheric model A reference atmospheric model describes how the ideal gas properties (namely: pressure, temperature, density, and molecular weight) of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of ...


References

{{Authority control Atmosphere of Earth Atmosphere