Test cross
   HOME

TheInfoList



OR:

Under the
law of dominance Mendelian inheritance (also known as Mendelism) is a type of biology, biological Heredity, inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, an ...
in
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
, an individual expressing a dominant
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...
could contain either two copies of the dominant
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
(
homozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
dominant) or one copy of each dominant and
recessive In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
allele (
heterozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
dominant). By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant. In a test cross, the individual in question is bred with another individual that is homozygous for the recessive trait and the
offspring In biology, offspring are the young creation of living organisms, produced either by a single organism or, in the case of sexual reproduction, two organisms. Collective offspring may be known as a brood or progeny in a more general way. This ca ...
of the test cross are examined. Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. Thus, this test yields 2 possible situations: # If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant allele. # If all of the offspring produced express the dominant trait, the individual in question is homozygous for the dominant allele.


History

The first uses of test crosses were in
Gregor Mendel Gregor Johann Mendel, Augustinians, OSA (; cs, Řehoř Jan Mendel; 20 July 1822 – 6 January 1884) was a biologist, meteorologist, mathematician, Augustinians, Augustinian friar and abbot of St Thomas's Abbey, Brno, St. Thomas' Abbey in Br ...
’s experiments in plant hybridization. While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed
zygosity Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
) of an individual for a dominant trait is determined by the expression patterns of the following generation. Rediscovery of Mendel’s work in the early 1900s led to an explosion of experiments employing the principles of test crosses. From 1908-1911,
Thomas Hunt Morgan Thomas Hunt Morgan (September 25, 1866 – December 4, 1945) was an American evolutionary biologist, geneticist, embryologist, and science author who won the Nobel Prize in Physiology or Medicine in 1933 for discoveries elucidating the role tha ...
conducted test crosses while determining the inheritance pattern of a white eye-colour mutation in Drosophila. These test cross experiments became hallmarks in the discovery of sex-linked traits.


Applications in model organisms

Test crosses have a variety of applications. Common animal organisms, called
model organism A model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workin ...
s, where test crosses are often used include
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (ro ...
and
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly". Starting with Ch ...
. Basic procedures for performing test crosses in these organisms are provided below:


C. elegans

To perform a test cross with C. elegans, place worms with a known recessive genotype with worms of an unknown genotype on an agar plate. Allow the male and hermaphrodite worms time to mate and produce offspring. Using a microscope, the ratio of recessive versus dominant phenotype will elucidate the genotype of the dominant parent.


D. melanogaster

To perform a test cross with D. melanogaster, select a trait with a known dominant and recessive phenotype. Red eye colour is dominant and white is recessive. Obtain virgin females with white eyes, young males with red eyes, and put them into a single tube. Once offspring begin to appear as larvae, remove parental lines and observe the phenotype of adult offsprings.


Limitations

There are many limitations to test crosses. It can be a time-consuming process as some organisms require a long growing time in each generation to show the necessary phenotype. A large number of offspring are also required to have reliable data due to statistics. Test crosses are only useful if dominance is complete. Incomplete dominance is when the dominant allele and recessive allele come together to form a blend of the two phenotypes in the offspring. Variable expressivity is when a single allele produces a range of phenotypes, which is also not accounted for in a test cross. As more advanced techniques to determine genotype emerge, the test cross is becoming less prevalent in genetics.
Genetic testing Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or ...
and
genome mapping Gene mapping describes the methods used to identify the locus of a gene and the distances between genes. Gene mapping can also describe the distances between different sites within a gene. The essence of all genome mapping is to place a co ...
are modern advances which allow for more efficient and detailed information about one’s genotype to be determined. Test crosses, however, are still used to this day and have created an excellent foundation for the development of more sophisticated techniques.


References

{{refend Classical genetics