In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the winding number or winding index of a
closed curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight.
Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
in the
plane around a given
point is an
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's
number of turns. For certain open
plane curve
In mathematics, a plane curve is a curve in a plane that may be a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane c ...
s, the number of turns may be a non-integer. The winding number depends on the
orientation
Orientation may refer to:
Positioning in physical space
* Map orientation, the relationship between directions on a map and compass directions
* Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
of the curve, and it is
negative if the curve travels around the point clockwise.
Winding numbers are fundamental objects of study in
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, and they play an important role in
vector calculus
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
,
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
,
geometric topology
In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another.
History
Geometric topology as an area distinct from algebraic topo ...
,
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, and
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
(such as in
string theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
).
Intuitive description
Suppose we are given a closed, oriented curve in the ''xy'' plane. We can imagine the curve as the path of motion of some object, with the orientation indicating the direction in which the object moves. Then the winding number of the curve is equal to the total number of counterclockwise turns that the object makes around the origin.
When counting the total number of turns, counterclockwise motion counts as positive, while clockwise motion counts as negative. For example, if the object first circles the origin four times counterclockwise, and then circles the origin once clockwise, then the total winding number of the curve is three.
Using this scheme, a curve that does not travel around the origin at all has winding number zero, while a curve that travels clockwise around the origin has negative winding number. Therefore, the winding number of a curve may be any
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
. The following pictures show curves with winding numbers between −2 and 3:
Formal definition
Let
be a continuous closed path on the plane minus one point. The winding number of
around
is the integer
:
where
is the path written in polar coordinates, i.e. the lifted path through the
covering map
In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphisms ...
:
The winding number is well defined because of the
existence and uniqueness of the lifted path (given the starting point in the covering space) and because all the fibers of
are of the form
(so the above expression does not depend on the choice of the starting point). It is an integer because the path is closed.
Alternative definitions
Winding number is often defined in different ways in various parts of mathematics. All of the definitions below are equivalent to the one given above:
Alexander numbering
A simple
combinatorial
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
rule for defining the winding number was proposed by
August Ferdinand Möbius
August Ferdinand Möbius (, ; ; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer.
Life and education
Möbius was born in Schulpforta, Electorate of Saxony, and was descended on his mothe ...
in 1865
and again independently by
James Waddell Alexander II
James Waddell Alexander II (September 19, 1888 September 23, 1971) was a mathematician and topologist of the pre-World War II era and part of an influential Princeton topology elite, which included Oswald Veblen, Solomon Lefschetz, and others. ...
in 1928.
Any curve partitions the plane into several connected regions, one of which is unbounded. The winding numbers of the curve around two points in the same region are equal. The winding number around (any point in) the unbounded region is zero. Finally, the winding numbers for any two adjacent regions differ by exactly 1; the region with the larger winding number appears on the left side of the curve (with respect to motion down the curve).
Differential geometry
In
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, parametric equations are usually assumed to be
differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
(or at least piecewise differentiable). In this case, the polar coordinate ''θ'' is related to the rectangular coordinates ''x'' and ''y'' by the equation:
:
Which is found by differentiating the following definition for θ:
:
By the
fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, inte ...
, the total change in ''θ'' is equal to the
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
of ''dθ''. We can therefore express the winding number of a differentiable curve as a
line integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
:
:
The
one-form
In differential geometry, a one-form (or covector field) on a differentiable manifold is a differential form of degree one, that is, a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the to ...
''dθ'' (defined on the complement of the origin) is
closed but not exact, and it generates the first
de Rham cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
group of the
punctured plane
In topology, puncturing a manifold is removing a finite set of points from that manifold. The set of points can be small as a single point. In this case, the manifold is known as once-punctured. With the removal of a second point, it becomes twice ...
. In particular, if ''ω'' is any closed differentiable one-form defined on the complement of the origin, then the integral of ''ω'' along closed loops gives a multiple of the winding number.
Complex analysis
Winding numbers play a very important role throughout complex analysis (cf. the statement of the
residue theorem
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well ...
). In the context of
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
, the winding number of a
closed curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight.
Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
in the
complex plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
can be expressed in terms of the complex coordinate . Specifically, if we write ''z'' = ''re''
''iθ'', then
:
and therefore
:
As
is a closed curve, the total change in
is zero, and thus the integral of
is equal to
multiplied by the total change in
. Therefore, the winding number of closed path
about the origin is given by the expression
:
More generally, if
is a closed curve parameterized by