A Tundra orbit (russian: орбита «Тундра») is a
highly elliptical geosynchronous orbit
A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
with a high
inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a Plane of reference, reference plane and the orbital plane or Axis of rotation, axis of direction of the orbiting object ...
(approximately 63.4°), an
orbital period
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
of one
sidereal day
Sidereal time (as a unit also sidereal day or sidereal rotation period) (sidereal ) is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coord ...
, and a typical
eccentricity
Eccentricity or eccentric may refer to:
* Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal"
Mathematics, science and technology Mathematics
* Off-Centre (geometry), center, in geometry
* Eccentricity (g ...
between 0.2 and 0.3. A
satellite
A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope ...
placed in this orbit spends most of its time over a chosen area of the
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, a phenomenon known as
apogee dwell, which makes them particularly well suited for
communications satellites
A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. C ...
serving high-latitude regions. The
ground track
A ground track or ground trace is the path on the surface of a planet directly below an aircraft's or satellite's trajectory. In the case of satellites, it is also known as a suborbital track, and is the vertical projection of the satellite's or ...
of a satellite in a Tundra orbit is a closed figure 8 with a smaller loop over either the northern or southern hemisphere.
This differentiates them from
Molniya orbit
A Molniya orbit ( rus, Молния, p=ˈmolnʲɪjə, a=Ru-молния.ogg, "Lightning") is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an ...
s designed to service high-latitude regions, which have the same inclination but half the period and do not loiter over a single region.
Uses
Tundra and
Molniya Molniya (Russian for ''lightning'') may refer to:
* Molniya (satellite), a Soviet military communications satellite
** Molniya orbit
* Molniya (explosive trap), a KGB explosive device
* Molniya (rocket), a variation of the Soyuz launch vehicle
* OKB ...
orbits are used to provide high-
latitude
In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
users with higher
elevation
The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface (see Geodetic datum § Vert ...
angles than a
geostationary orbit
A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular geosynchronous orbit in altitud ...
. This is desirable as broadcasting to these latitudes from a geostationary orbit (above the Earth's
equator
The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
) requires considerable power due to the low
elevation angles, and the extra distance and atmospheric attenuation that comes with it. Sites located above 81° latitude are unable to view geocentric satellites at all, and as a rule of thumb, elevation angles of less than 10° can cause problems, depending on the communications frequency.
Highly elliptical orbits provide an alternative to geostationary ones, as they remain over their desired high-latitude regions for long periods of time at the apogee. Their convenience is mitigated by cost, however: two satellites are required to provide continuous coverage from a Tundra orbit (three from a Molniya orbit).
A ground station receiving data from a satellite constellation in a highly elliptical orbit must periodically switch between satellites and deal with varying signal strengths, latency and
Doppler shift
The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
s as the satellite's range changes throughout its orbit. These changes are less pronounced for satellites in a Tundra orbit, given their increased distance from the surface, making tracking and communication more efficient.
Additionally, unlike the Molniya orbit, a satellite in a Tundra orbit avoids passing through the
Van Allen belts.
Despite these advantages the Tundra orbit is used less often than a Molniya orbit
[ in part due to the higher launch energy required.]
Proposed uses
In 2017 the ESA
, owners =
, headquarters = Paris, Île-de-France, France
, coordinates =
, spaceport = Guiana Space Centre
, seal = File:ESA emblem seal.png
, seal_size = 130px
, image = Views in the Main Control Room (1205 ...
Space Debris office released a paper proposing that a Tundra-like orbit be used as a disposal orbit for old high-inclination geosynchronous satellites, as opposed to traditional graveyard orbit
A graveyard orbit, also called a junk orbit or disposal orbit, is an orbit that lies away from common operational orbits. One significant graveyard orbit is a supersynchronous orbit well beyond geosynchronous orbit. Some satellites are moved int ...
s.
Properties
A typical Tundra orbit has the following properties:
* Inclination: 63.4°
* Argument of perigee: 270°
* Period: 1436 minutes
* Eccentricity: 0.24–0.4
* Semi-major axis:
Orbital inclination
In general, the oblateness of the Earth perturbs a satellite's argument of perigee
The argument of periapsis (also called argument of perifocus or argument of pericenter), symbolized as ''ω'', is one of the orbital elements of an orbiting body. Parametrically, ''ω'' is the angle from the body's ascending node to its periapsi ...
() such that it gradually changes with time. If we only consider the first-order coefficient , the perigee will change according to equation , unless it is constantly corrected with station-keeping thruster burns.
where is the orbital inclination, is the eccentricity, is mean motion in degrees per day, is the perturbing factor, is the radius of the Earth, is the semimajor axis, and is in degrees per day.
To avoid this expenditure of fuel, the Tundra orbit uses an inclination of 63.4°, for which the factor is zero, so that there is no change in the position of perigee over time. This is called the critical inclination, and an orbit designed in this manner is called a frozen orbit
In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which natural drifting due to the central body's shape has been minimized by careful selection of the orbital parameters. Typically, this is an orbit in which, over a ...
.
Argument of perigee
An argument of perigee
The argument of periapsis (also called argument of perifocus or argument of pericenter), symbolized as ''ω'', is one of the orbital elements of an orbiting body. Parametrically, ''ω'' is the angle from the body's ascending node to its periapsi ...
of 270° places apogee at the northernmost point of the orbit. An argument of perigee of 90° would likewise serve the high southern latitudes. An argument of perigee of 0° or 180° would cause the satellite to dwell over the equator, but there would be little point to this as this could be better done with a conventional geostationary orbit
A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular geosynchronous orbit in altitud ...
.
Period
The period of one sidereal day ensures that the satellites follows the same ground track over time. This is controlled by the semi-major axis of the orbit.
Eccentricity
The eccentricity is chosen for the dwell time required, and changes the shape of the ground track. A Tundra orbit generally has an eccentricity of about 0.2; one with an eccentricity of about 0.4, changing the ground track from a figure 8 to a teardrop, is called a Supertundra orbit.
Semi-major axis
The exact height of a satellite in a Tundra orbit varies between missions, but a typical orbit will have a perigee of approximately and an apogee of , for a semi-major axis of .
Spacecraft using Tundra orbits
From 2000 to 2016, Sirius Satellite Radio
Sirius Satellite Radio was a satellite radio (SDARS) and online radio service operating in North America, owned by Sirius XM Holdings.
Headquartered in New York City, with smaller studios in Los Angeles and Memphis, Tennessee, Memphis, Sirius ...
, now part of Sirius XM Holdings
Sirius XM Holdings Inc. is an American broadcasting company headquartered in Midtown Manhattan, New York City that provides satellite radio and online radio services operating in the United States. It was formed by the 2008 merger of Sirius Sat ...
, operated a constellation
A constellation is an area on the celestial sphere in which a group of visible stars forms Asterism (astronomy), a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object.
The origins of the e ...
of three satellites in Tundra orbits for satellite radio
Satellite radio is defined by the International Telecommunication Union (ITU)'s ITU Radio Regulations (RR) as a ''broadcasting-satellite service''. The satellite's signals are broadcast nationwide, across a much wider geographical area than ter ...
. The RAAN and mean anomaly
In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical ...
of each satellite were offset by 120° so that when one satellite moved out of position, another had passed perigee and was ready to take over. The constellation was developed to better reach consumers in far northern latitudes, reduce the impact of urban canyons
An urban canyon (also known as a street canyon) is a place where the street is flanked by buildings on both sides creating a canyon-like environment, evolved etymologically from the Canyon of Heroes in Manhattan. Such human-built canyons are made ...
and required only 130 repeaters compared to 800 for a geostationary system. After Sirius' merger with XM it changed the design and orbit of the FM-6 replacement satellite from a tundra to a geostationary one. This supplemented the already geostationary FM-5 (launched 2009), and in 2016 Sirius discontinued broadcasting from tundra orbits. The Sirius satellites were the only commercial satellites to use a Tundra orbit.
The Japanese Quasi-Zenith Satellite System
The Quasi-Zenith Satellite System (QZSS), also known as , is a four-satellite regional time transfer system and a satellite-based augmentation system developed by the Japanese government to enhance the United States-operated Global Positioni ...
uses a geosynchronous orbit similar to a Tundra orbit, but with an inclination of only 43°. It includes four satellites following the same ground track. It was tested from 2010 and became fully operational in November 2018.
Proposed systems
The Tundra orbit has been considered for use by the ESA
, owners =
, headquarters = Paris, Île-de-France, France
, coordinates =
, spaceport = Guiana Space Centre
, seal = File:ESA emblem seal.png
, seal_size = 130px
, image = Views in the Main Control Room (1205 ...
's Archimedes project, a broadcasting system proposed in the 1990s.
See also
* Elliptic orbit
In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it ...
* List of orbits
Summary
A simple list of just the common orbit abbreviations.
List of abbreviations of common Earth orbits
List of abbreviations of other orbits
Classifications
The following is a list of types of orbits:
Centric classifications
* Gal ...
* Molniya orbit
A Molniya orbit ( rus, Молния, p=ˈmolnʲɪjə, a=Ru-молния.ogg, "Lightning") is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an ...
References
{{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System
Earth orbits
Satellite broadcasting