HOME

TheInfoList



OR:

In eight-dimensional
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex. There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.


Rectified 8-simplex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as .


Coordinates

The Cartesian coordinates of the vertices of the ''rectified 8-simplex'' can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.


Images


Birectified 8-simplex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as . The ''birectified 8-simplex'' is the vertex figure of the 152 honeycomb.


Coordinates

The Cartesian coordinates of the vertices of the ''birectified 8-simplex'' can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.


Images


Trirectified 8-simplex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as .


Coordinates

The Cartesian coordinates of the vertices of the ''trirectified 8-simplex'' can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.


Images


Related polytopes

This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb. It is also one of 135 uniform 8-polytopes with A8 symmetry.


Notes


References

* H.S.M. Coxeter: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. * o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene


External links


Polytopes of Various Dimensions


{{Polytopes 8-polytopes