Transition Metal Complexes Of Aldehydes And Ketones
   HOME

TheInfoList



OR:

Transition metal complexes of aldehydes and ketones describes
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
es with
aldehyde In organic chemistry, an aldehyde () is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl grou ...
(RCHO) and
ketone In organic chemistry, a ketone is a functional group with the structure R–C(=O)–R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group –C(=O)– (which contains a carbon-oxygen double bo ...
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
s. Because aldehydes and ketones are common, the area is of fundamental interest. Some reactions that are useful in
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J.; ...
involve such complexes.


Structure and bonding

In monometallic complexes, aldehydes and ketones can bind to metals in either of two modes, η1-O-bonded and η2-C,O-bonded. These bonding modes are sometimes referred to sigma- and pi-bonded. These forms may sometimes interconvert. The sigma bonding mode is more common for higher valence, Lewis-acidic metal centers (e.g., Zn2+). The pi-bonded mode is observed for low valence, electron-rich metal centers (e.g., Fe(0) and Os(0)). For the purpose of electron-counting, O-bonded ligands count as 2-electron "L ligands": they are Lewis bases. η2-C,O ligands are described as analogues of alkene ligands, i.e. the Dewar-Chatt-Duncanson model. η2-C,O ketones and aldehydes can function as bridging ligands, utilizing a lone pair of electrons on oxygen. One such complex is , which features a ring.


Related ligands

Related to η1-O-bonded complexes of aldehydes and ketones are
metal acetylacetonates Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion () and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal t ...
and related species, which can be viewed as a combination of ketone and
enolate In organic chemistry, enolates are organic anions derived from the deprotonation of carbonyl () compounds. Rarely isolated, they are widely used as reagents in the synthesis of organic compounds. Bonding and structure Enolate anions are electr ...
ligands.


Reactions

Some η2-aldehyde complexes insert alkenes to give five-membered
metallacycle In organometallic chemistry, a metallacycle is a derivative of a carbocyclic compound wherein a metal has replaced at least one carbon center; this is to some extent similar to heterocycles. Metallacycles appear frequently as reactive intermediates ...
s. η1-Complexes of alpha-beta unsaturated carbonyls exhibit enhanced reactivity toward
diene In organic chemistry a diene ( ) (diolefin ( ) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alk''ene'' units, with the standard prefix ''di'' of systematic nomenclature. ...
s. This interaction is the basis of Lewis-acid catalyzed Diels-Alder reactions.


References

{{Coordination complexes Organometallic chemistry Transition metals Coordination chemistry