HOME

TheInfoList



OR:

In
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
''F'' is called totally real if for each
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is gi ...
of ''F'' into the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
lies inside the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s. Equivalent conditions are that ''F'' is generated over Q by one
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
of an
integer polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
''P'', all of the roots of ''P'' being real; or that the tensor product algebra of ''F'' with the real field, over Q, is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to a tensor power of R. For example,
quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 an ...
s ''F'' of degree 2 over Q are either real (and then totally real), or complex, depending on whether the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
of a positive or negative number is adjoined to Q. In the case of
cubic field In mathematics, specifically the area of algebraic number theory, a cubic field is an algebraic number field of degree three. Definition If ''K'' is a field extension of the rational numbers Q of degree 'K'':Qnbsp;= 3, then ''K'' is called ...
s, a cubic integer polynomial ''P''
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
over Q will have at least one real root. If it has one real and two complex roots the corresponding cubic extension of Q defined by adjoining the real root will ''not'' be totally real, although it is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
of real numbers. The totally real number fields play a significant special role in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
. An
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvabl ...
of Q is either totally real, or contains a totally real subfield over which it has degree two. Any number field that is Galois over the
rationals In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rationa ...
must be either totally real or totally imaginary.


See also

*
Totally imaginary number field In algebraic number theory, a number field is called totally imaginary (or totally complex) if it cannot be embedding, embedded in the real numbers. Specific examples include imaginary quadratic fields, cyclotomic fields, and, more generally, CM fie ...
*
CM-field In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field. The abbreviation "CM" was introduced by . Formal definition A number field '' ...
, a totally imaginary quadratic extension of a totally real field


References

*{{Citation , last=Hida , first=Haruzo , author-link=Haruzo Hida , title=Elementary theory of L-functions and Eisenstein series , year=1993 , publisher=
Cambridge University Press Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing hou ...
, series=London Mathematical Society Student Texts , volume=26 , isbn=978-0-521-43569-7 Field (mathematics) Algebraic number theory