HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
''R'' ⊆ ''X''×''Y'' between two sets ''X'' and ''Y'' is total (or left total) if the source set ''X'' equals the domain . Conversely, ''R'' is called right total if ''Y'' equals the range . When ''f'': ''X'' → ''Y'' is a function, the domain of ''f'' is all of ''X'', hence ''f'' is a total relation. On the other hand, if ''f'' is a
partial function In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain ...
, then the domain may be a proper subset of ''X'', in which case ''f'' is not a total relation. "A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."Functions
from
Carnegie Mellon University Carnegie Mellon University (CMU) is a private research university in Pittsburgh, Pennsylvania, United States. The institution was established in 1900 by Andrew Carnegie as the Carnegie Technical Schools. In 1912, it became the Carnegie Institu ...


Algebraic characterization

Total relations can be characterized algebraically by equalities and inequalities involving compositions of relations. To this end, let X,Y be two sets, and let R\subseteq X\times Y. For any two sets A,B, let L_=A\times B be the universal relation between A and B, and let I_A=\ be the identity relation on A. We use the notation R^\top for the
converse relation In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms ...
of R. * R is total iff for any set W and any S\subseteq W\times X, S\ne\emptyset implies SR\ne\emptyset. * R is total iff I_X\subseteq RR^\top. * If R is total, then L_=RL_. The converse is true if Y\ne\emptyset.If Y=\emptyset\ne X, then R will be not total. * If R is total, then \overline=\emptyset. The converse is true if Y\ne\emptyset.Observe \overline=\emptyset\Leftrightarrow RL_=L_, and apply the previous bullet. * If R is total, then \overline R\subseteq R\overline. The converse is true if Y\ne\emptyset. Definition 5.8, page 57. * More generally, if R is total, then for any set Z and any S\subseteq Y\times Z, \overline\subseteq R\overline S. The converse is true if Y\ne\emptyset.Take Z=Y,S=I_Y and appeal to the previous bullet.


See also

* Serial relation — a total homogeneous relation


Notes


References

* Gunther Schmidt & Michael Winter (2018) ''Relational Topology'' * C. Brink, W. Kahl, and G. Schmidt (1997) ''Relational Methods in Computer Science'', Advances in Computer Science, page 5, * Gunther Schmidt & Thomas Strohlein (2012) 987 * Gunther Schmidt (2011) {{Order theory Properties of binary relations