Toroidal inductors and transformers are
inductor
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
s and
transformer
A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s which use
magnetic core
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, in ...
s with a
toroid
In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
al (ring or donut) shape. They are
passive
Passive may refer to:
* Passive voice, a grammatical voice common in many languages, see also Pseudopassive
* Passive language, a language from which an interpreter works
* Passivity (behavior), the condition of submitting to the influence of on ...
electronic component
An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not ...
s, consisting of a circular ring or donut shaped
magnetic core
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, in ...
of
ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
material such as
laminated iron, iron powder, or
ferrite, around which
wire
Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample diameter 40 mm
A wire is a flexible strand of metal.
Wire is c ...
is wound.
Although closed-core inductors and transformers often used cores with a square shape in the past, the use of toroidal-shaped cores has significantly increased because of their superior electrical performance. The advantage of the toroidal shape is that, due to its symmetry, the amount of
magnetic flux
In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
that escapes outside the core (
leakage flux
Leakage inductance derives from the electrical property of an imperfectly-coupled transformer whereby each winding behaves as a self-inductance in series with the winding's respective ohmic resistance constant. These four winding constants also in ...
) is low, therefore it is more efficient and thus radiates less
electromagnetic interference
Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electros ...
(EMI).
Toroidal inductors and transformers are used in a wide range of electronic circuits:
power supplies
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a res ...
,
inverter
A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opp ...
s, and
amplifier
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost the v ...
s, which in turn are used in the vast majority of electrical equipment: TVs, radios, computers, and
audio system
Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recording te ...
s.
Advantages of toroidal windings
In general, a toroidal inductor/transformer is more compact than other shaped cores because they are made of fewer materials and include a centering washer, nuts, and bolts resulting in up to a 50% lighter weight design. This is especially the case for power devices.
Because the toroid is a closed-loop core, it will have a higher magnetic field and thus higher
inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
and
Q factor
In physics and engineering, the quality factor or ''Q'' factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy los ...
than an inductor of the same mass with a straight core (
solenoid
upright=1.20, An illustration of a solenoid
upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines
A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whose ...
coils). This is because most of the magnetic field is contained within the core. By comparison, with an inductor with a straight core, the magnetic field emerging from one end of the core has a long path through air to enter the other end.
In addition, because the windings are relatively short and wound in a closed magnetic field, a toroidal transformer will have a lower secondary impedance which will increase efficiency, electrical performance and reduce effects such as distortion and fringing.
Due to the symmetry of a toroid, little magnetic flux escapes from the core (leakage flux). Thus, a toroidal inductor/transformer, radiates less electromagnetic interference (EMI) to adjacent circuits and is an ideal choice for highly concentrated environments. Manufacturers have adopted toroidal coils in recent years to comply with increasingly strict international standards limiting the amount of electromagnetic field consumer electronics can produce.
Total B field confinement by toroidal inductors
In some circumstances, the current in the winding of a toroidal inductor contributes only to the B field inside the windings. It does not contribute to the magnetic B field outside the windings. This is a consequence of symmetry and
Ampère's circuital law.
Sufficient conditions for total internal confinement of the B field
The absence of circumferential current
(the path of circumferential current is indicated by the red arrow in figure 3 of this section) and the axially symmetric layout of the conductors and magnetic materials
are sufficient conditions for total internal confinement of the B field. (Some authors prefer to use the H field). Because of the symmetry, the lines of B flux must form circles of constant intensity centered on the axis of symmetry. The only lines of B flux that encircle any current are those that are inside the toroidal winding. Therefore, from Ampere's circuital law, the intensity of the B field must be zero outside the windings.
Figure 3 of this section shows the most common toroidal winding. It fails both requirements for total B field confinement. Looking out from the axis, sometimes the winding is on the inside of the core and sometimes on the outside of the core. It is not axially symmetric in the near region. However, at points a distance of several times the winding spacing, the toroid does look symmetric.
There is still the problem of the circumferential current. No matter how many times the winding encircles the core and no matter how thin the wire, this toroidal inductor will still include a one coil loop in the plane of the toroid. This winding will also produce and be susceptible to an E field in the plane of the inductor.
Figures 4-6 show different ways to neutralize the circumferential current. Figure 4 is the simplest and has the advantage that the return wire can be added after the inductor is bought or built.
E field in the plane of the toroid
There will be a distribution of potential along the winding. This can lead to an E-Field in the plane of the toroid and also a susceptibility to an E field in the plane of the toroid, as shown in figure 7. This can be mitigated by using a return winding, as shown in Figure 8. With this winding, each place the winding crosses itself; the two parts will be at equal and opposite polarity, which substantially reduces the E field generated in the plane.
Toroidal inductor/transformer and magnetic vector potential
See Feynman chapter 14
and 15
for a general discussion of
magnetic vector potential
In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the magnetic v ...
. See Feynman page 15-11
for a diagram of the magnetic vector potential around a long thin solenoid which also exhibits total internal confinement of the B field, at least in the infinite limit.
The A field is accurate when using the assumption
. This would be true under the following assumptions:
* 1. the
Coulomb gauge
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
is used
* 2. the
Lorenz gauge
In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who ha ...
is used and there is no distribution of charge,
* 3. the
Lorenz gauge
In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who ha ...
is used and zero frequency is assumed
* 4. the
Lorenz gauge
In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who ha ...
is used and a non-zero frequency that is low enough to neglect
is assumed.
Number 4 will be presumed for the rest of this section and may be referred to the "quasi-static condition".
Although the axially symmetric toroidal inductor with no circumferential current totally confines the B field within the windings, the A field (magnetic vector potential) is not confined. Arrow #1 in the picture depicts the vector potential on the axis of symmetry. Radial current sections a and b are equal distances from the axis but pointed in opposite directions, so they will cancel. Likewise, segments c and d cancel. All the radial current segments cancel. The situation for axial currents is different. The axial current on the outside of the toroid is pointed down and the axial current on the inside of the toroid is pointed up. Each axial current segment on the outside of the toroid can be matched with an equal but oppositely directed segment on the inside of the toroid. The segments on the inside are closer than the segments on the outside to the axis, therefore there is a net upward component of the A field along the axis of symmetry.
Since the equations
, and
(assuming quasi-static conditions, i.e.
) have the same form, then the lines and contours of A relate to B like the lines and contours of B relate to j. Thus, a depiction of the A field around a loop of B flux (as would be produced in a toroidal inductor) is qualitatively the same as the B field around a loop of current. The figure to the left is an artist's depiction of the A field around a toroidal inductor. The thicker lines indicate paths of higher average intensity (shorter paths have higher intensity so that the path integral is the same). The lines are just drawn to look good and impart general look of the A field.
Toroidal transformer action in the presence of total B field confinement
The E and B fields can be computed from the A and
(scalar electric potential) fields
:
and :
and so even if the region outside the windings is devoid of B field, it is filled with non-zero E field.
: The quantity
is responsible for the desirable magnetic field coupling between primary and secondary while the quantity
is responsible for the undesirable electric field coupling between primary and secondary. Transformer designers attempt to minimize the electric field coupling. For the rest of this section,
will assumed to be zero unless otherwise specified.
Stokes theorem applies,
so that the path integral of A is equal to the enclosed B flux, just as the path integral B is equal to a constant times the enclosed current
The path integral of E along the secondary winding gives the secondary's induced EMF (Electro-Motive Force).
::
which says the EMF is equal to the time rate of change of the B flux enclosed by the winding, which is the usual result.
Toroidal transformer Poynting vector coupling from primary to secondary in the presence of total B field confinement
Explanation of the figure
This figure shows the half section of a toroidal transformer. Quasi-static conditions are assumed, so the phase of each field is the same everywhere. The transformer, its windings and all things are distributed symmetrically about the axis of symmetry. The windings are such that there is no circumferential current. The requirements are met for full internal confinement of the B field due to the primary current. The core and primary winding are represented by the gray-brown torus. The primary winding is not shown, but the current in the winding at the cross-section surface is shown as gold (or orange) ellipses. The B field caused by the primary current is confined to the region enclosed by the primary winding (i.e. the core). Blue dots on the left-hand cross-section indicate that lines of B flux in the core come out of the left-hand cross-section. On the other cross-section, blue plus signs indicate that the B flux enters there. The E field sourced from the primary currents is shown as green ellipses. The secondary winding is shown as a brown line coming directly down the axis of symmetry. In standard practice, the two ends of the secondary are connected with a long wire that stays well away from the torus, but to maintain the absolute axial symmetry, the entire apparatus is envisioned as being inside a perfectly conductive sphere with the secondary wire "grounded" to the inside of the sphere at each end. The secondary is made of resistance wire, so there is no separate load. The E field along the secondary causes current in the secondary (yellow arrows), which causes a B field around the secondary (shown as blue ellipses). This B field fills space, including inside the transformer core, so in the end, there is a continuous non-zero B field from the primary to the secondary, if the secondary is not open-circuited. The cross product of the E field (sourced from primary currents) and the B field (sourced from the secondary currents) forms the Poynting vector, which points from the primary toward the secondary.
Notes
References
*
*
*
*
*
External links
Inductor and Transformer Design Guides - Magneticsincludes formula, but assumes circular windings
Design Considerations of Toroid TransformersIndustrial study material: Ferrite Toroid Transformers Design
{{DEFAULTSORT:Toroidal Inductors And Transformers
Electric transformers