HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, a discipline in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a topological category is a category that is enriched over the category of
compactly generated In mathematics, compactly generated can refer to: * Compactly generated group, a topological group which is algebraically generated by one of its compact subsets *Compactly generated space In topology, a topological space X is called a compactly ge ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
s. They can be used as a foundation for
higher category theory In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. H ...
, where they can play the role of (\infty,1)-categories. An important example of a topological category in this sense is given by the category of
CW complex In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generali ...
es, where each set Hom(''X'',''Y'') of continuous maps from ''X'' to ''Y'' is equipped with the
compact-open topology In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory ...
.


See also

*
Infinity category In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. Th ...
* Simplicial category


References

*{{Citation , last1=Lurie , first1=Jacob , title=Higher topos theory , arxiv=math.CT/0608040 , publisher=
Princeton University Press Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial ...
, series=Annals of Mathematics Studies , isbn=978-0-691-14049-0 , mr=2522659 , year=2009 , volume=170


External links

* topologically enriched category at the ''n''Lab Category theory