HOME

TheInfoList



OR:

Mitochondrial threshold effect is a phenomenon where the number of mutated
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
has surpassed a certain threshold which causes the electron transport chain and ATP synthesis of a mitochondrion to fail. There isn't a set number that needs to be surpassed, however, it is associated with an increase of the number of mutated
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
. When there is 60-80% of mutated
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
present, that is said to be the threshold level. While 60-80% is the general threshold level, this is also dependent on the individual, the specific organ in question and what the specific mutation is. There are three specific types of mitochondrial threshold effects: phenotypic threshold effect, biochemical threshold effect and translational threshold effect. Threshold expression is a phenomenon in which phenotypic expression of a
mitochondrial disease Mitochondrial disease is a group of disorders caused by mitochondrial dysfunction. Mitochondria are the organelles that generate energy for the cell and are found in every cell of the human body except red blood cells. They convert the energy of ...
within an organ system occurs when the severity of the mutation, relative number of mutant
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
, and reliance of the organ system on oxidative phosphorylation combine in such a way that ATP production of the tissue falls below the level required by the tissue. The
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
may be expressed even if the percentage of mutant mtDNA is below 50% if the mutation is severe enough.


Phenotypic threshold effect

Phenotypic threshold effect is when there is a certain amount of wild-type
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
present in the mitochondrion which is able to balance out the number of mutated
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
. As a result, the
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
is normal. However, if the number of wild-type
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
decreases and the number of mutant
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
increases, resulting in an imbalance between the two, the threshold level has been altered which causes complications. This occurs because the wild-type
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
present are able to keep the electron transport chain and ATP synthesis functioning despite there being a few number of them present. They are able to counterbalance the mutated
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
, however, when the number drops below threshold level the mutant
mtDNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA ...
take over.


See also

*
Heteroplasmy Heteroplasmy is the presence of more than one type of organellar genome (mitochondrial DNA or plastid DNA) within a cell or individual. It is an important factor in considering the severity of mitochondrial diseases. Because most eukaryotic cells c ...


References


Further reading

* DNA Mitochondrial diseases {{biochem-stub