HOME

TheInfoList



OR:

Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value. The thermal insulance of a structure is the reciprocal of its thermal transmittance.


U-value

Although the concept of U-value (or U-factor) is universal, U-values can be expressed in different units. In most countries, U-value is expressed in SI units, as
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s per square metre-
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
: :W/(m2⋅K) In the United States, U-value is expressed as British thermal units (Btu) per hour-square feet-degrees Fahrenheit: :Btu/(h⋅ft2⋅°F) Within this article, U-values are expressed in SI unless otherwise noted. To convert from SI to US customary values, divide by 5.678. Well-insulated parts of a building have a low thermal transmittance whereas poorly insulated parts of a building have a high thermal transmittance. Losses due to
thermal radiation Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
, thermal convection and thermal conduction are taken into account in the U-value. Although it has the same units as heat transfer coefficient, thermal transmittance is different in that the heat transfer coefficient is used to solely describe heat transfer in fluids while thermal transmittance is used to simplify an equation that has several different forms of thermal resistances. It is described by the equation: :''Φ'' = ''A'' × ''U'' × (''T1'' - ''T2'') where ''Φ'' is the heat transfer in watts, ''U'' is the thermal transmittance, ''T1'' is the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on ...
on one side of the structure, ''T2'' is the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on ...
on the other side of the structure and ''A'' is the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
in square metres. Thermal transmittances of most walls and roofs can be calculated using ISO 6946, unless there is metal bridging the insulation in which case it can be calculated using ISO 10211. For most ground floors it can be calculated using ISO 13370. For most
window A window is an opening in a wall, door, roof, or vehicle that allows the exchange of light and may also allow the passage of sound and sometimes air. Modern windows are usually glazed or covered in some other transparent or translucent mate ...
s the thermal transmittance can be calculated using ISO 10077 or ISO 15099. ISO 9869 describes how to measure the thermal transmittance of a structure experimentally. Choice of materials and quality of installation has a critical impact on the
window insulation Window insulation reduces heat transfer from one side of a window to the other. The U-value is used to refer to the amount of heat that can pass through a window, called thermal transmittance, with a lower score being better. The U-factor of a wi ...
results. The frame and double sealing of the window system are the actual weak points in the window insulation. Typical thermal transmittance values for common building structures are as follows: *Single glazing: 5.7 W/(m2⋅K) *Single glazed windows, allowing for frames: 4.5 W/(m2⋅K) *
Double glazed Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned wind ...
windows, allowing for frames: 3.3 W/(m2⋅K) *Double glazed windows with advanced coatings: 2.2 W/(m2⋅K) *Double glazed windows with advanced coatings and frames: 1.2 W/(m2⋅K) *
Triple glazed Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, ...
windows, allowing for frames: 1.8 W/(m2⋅K) *Triple glazed windows, with advanced coatings and frames: 0.8 W/(m2⋅K) *Well-insulated
roof A roof ( : roofs or rooves) is the top covering of a building, including all materials and constructions necessary to support it on the walls of the building or on uprights, providing protection against rain, snow, sunlight, extremes of temp ...
s: 0.15 W/(m2⋅K) *Poorly insulated roofs: 1.0 W/(m2⋅K) *Well-insulated walls: 0.25 W/(m2⋅K) *Poorly insulated walls: 1.5 W/(m2⋅K) *Well-insulated floors: 0.2 W/(m2⋅K) *Poorly insulated floors: 1.0 W/(m2⋅K) In practice the thermal transmittance is strongly affected by the quality of workmanship and if insulation is fitted poorly, the thermal transmittance can be considerably higher than if insulation is fitted well


Calculating thermal transmittance

When calculating a thermal transmittance it is helpful to consider the building's construction in terms of its different layers. For instance a cavity wall might be described as in the following table: In this example the total insulance is 1.64 K⋅m2/W. The thermal transmittance of the structure is the reciprocal of the total thermal insulance. The thermal transmittance of this structure is therefore 0.61 W/(m2⋅K). (Note that this example is simplified as it does not take into account any metal connectors, air gaps interrupting the insulation or mortar joints between the bricks and concrete blocks.) It is possible to allow for mortar joints in calculating the thermal transmittance of a wall, as in the following table. Since the mortar joints allow heat to pass more easily than the light
concrete Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most ...
blocks, the mortar is said to "bridge" the light concrete blocks. The average thermal insulance of the "bridged" layer depends upon the fraction of the area taken up by the mortar in comparison with the fraction of the area taken up by the light concrete blocks. To calculate thermal transmittance when there are "bridging" mortar joints it is necessary to calculate two quantities, known as ''Rmax'' and ''Rmin''. ''Rmax'' can be thought of as the total thermal insulance obtained if it is assumed that there is no lateral flow of heat and ''Rmin'' can be thought of as the total thermal insulance obtained if it is assumed that there is no resistance to the lateral flow of heat. The U-value of the above construction is approximately equal to 2 / (''Rmax'' + ''Rmin'') Further information about how to deal with "bridging" is given in ISO 6946.


Measuring thermal transmittance

Whilst calculation of thermal transmittance can readily be carried out with the help of software which is compliant with ISO 6946, a thermal transmittance calculation does not fully take workmanship into account and it does not allow for adventitious circulation of air between, through and around sections of insulation. To take the effects of workmanship-related factors fully into account it is necessary to carry out a thermal transmittance measurement. ISO 9869 describes how to measure the thermal transmittance of a roof or a wall by using heat flux sensor. These heat flux meters usually consist of thermopiles which provide an electrical signal which is in direct proportion to the heat flux. Typically they might be about in diameter and perhaps about thick and they need to be fixed firmly to the roof or wall which is under test in order to ensure good thermal contact. When the heat flux is monitored over a sufficiently long time, the thermal transmittance can be calculated by dividing the average heat flux by the average difference in temperature between the inside and outside of the building. For most wall and roof constructions the heat flux meter needs to monitor heat flows (and internal and external temperatures) continuously for a period of 72 hours to be conform the ISO 9869 standards. Generally, thermal transmittance measurements are most accurate when: *The difference in
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on ...
between the inside and outside of the building is at least . *The weather is cloudy rather than sunny (this makes accurate measurement of temperature easier). *There is good thermal contact between the
heat flux Heat flux or thermal flux, sometimes also referred to as ''heat flux density'', heat-flow density or ''heat flow rate intensity'' is a flow of energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity ...
meter and the wall or roof being tested. *The monitoring of heat flow and temperatures is carried out over at least 72 hours. *Different spots on a building element are measured or a thermographic camera is used to secure the homogeneity of the building element. When convection currents play a part in transmitting heat across a building component, then thermal transmittance increases as the temperature difference increases. For example, for an internal temperature of and an external temperature of , the optimum gap between panes in a double glazed window will be smaller than the optimum gap for an external temperature of . The inherent thermal transmittance of materials can also vary with temperaturethe mechanisms involved are complex, and the transmittance may increase or decrease as the temperature increases.Thermal conductivity of some common materials and gases
/ref>


References

{{Authority control Thermodynamics Building insulation materials