HOME

TheInfoList



OR:

The neutron detection temperature, also called the neutron energy, indicates a
free neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
's
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
, usually given in
electron volt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum ...
s. The term ''temperature'' is used, since hot, thermal and cold neutrons are
moderated Moderation is the process of eliminating or lessening extremes. It is used to ensure normality throughout the medium on which it is being conducted. Common uses of moderation include: *Ensuring consistency and accuracy in the marking of stud ...
in a medium with a certain temperature. The neutron energy distribution is then adapted to the
Maxwell distribution Maxwell may refer to: People * Maxwell (surname), including a list of people and fictional characters with the name ** James Clerk Maxwell, mathematician and physicist * Justice Maxwell (disambiguation) * Maxwell baronets, in the Baronetage of ...
known for thermal motion. Qualitatively, the higher the temperature, the higher the kinetic energy of the free neutrons. The momentum and
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of the neutron are related through the
de Broglie relation Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave ...
. The large wavelength of slow neutrons allows for the large cross section.


Neutron energy distribution ranges

But different ranges with different names are observed in other sources. The following is a detailed classification:


Thermal

A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10−21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
of the
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
for this temperature. After a number of collisions with nuclei ( scattering) in a medium ( neutron moderator) at this temperature, those
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s which are not absorbed reach about this energy level. Thermal neutrons have a different and sometimes much larger effective
neutron absorption Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
cross-section for a given nuclide than fast neutrons, and can therefore often be absorbed more easily by an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, creating a heavier, often
unstable In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
of the
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
as a result. This event is called
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emit ...
.


Epithermal

:*Neutrons of energy greater than thermal :*Greater than 0.025 eV


Cadmium

:*Neutrons which are strongly absorbed by cadmium :*Less than 0.5 eV.


Epicadmium

:*Neutrons which are not strongly absorbed by cadmium :*Greater than 0.5 eV.


Cold (Slow) neutrons

:* Neutrons of lower (much lower) energy than thermal neutrons. :* Less than 5 meV. :Cold (Slow) neutrons are subclassified into cold (CN), very cold (VCN), and ultra-cold (UCN) neutrons, each having particular characteristics in terms of their optical interactions with matter. As the wavelength is made (chosen to be) longer, lower values of the momentum exchange become accessible. Therefore, it is possible to study larger scales and slower dynamics. Gravity also plays a very significant role in the case of UCN. Nevertheless, UCN reflect at all angles of incidence. This is because their momentum is comparable to the optical potential of materials. This effect is used to store them in bottles and study their fundamental properties e.g. lifetime, neutron electrical-dipole moment etc... The main limitations of the use of slow neutrons is the low flux and the lack of efficient optical devices (in the case of CN and VCN). Efficient neutron optical components are being developed and optimized to remidy this lack.


Resonance

:*Refers to neutrons which are strongly susceptible to non-fission capture by U-238. :*1 eV to 300 eV


Intermediate

:*Neutrons that are between slow and fast :*Few hundred eV to 0.5 MeV.


Fast

: A fast neutron is a free neutron with a kinetic energy level close to 1  M eV (100  T J/ kg), hence a speed of 14,000 km/ s or higher. They are named ''fast''
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes: * Nuclear fission produces neutrons with a mean energy of 2 MeV (200 TJ/kg, i.e. 20,000 km/s), which qualifies as "fast". However the range of neutrons from fission follows a
Maxwell–Boltzmann distribution In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and use ...
from 0 to about 14 MeV in the center of momentum frame of the disintegration, and the
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
of the energy is only 0.75 MeV, meaning that fewer than half of fission neutrons qualify as "fast" even by the 1 MeV criterion. * Spontaneous fission is a mode of radioactive decay for some heavy nuclides. Examples include
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
and californium-252. *
Nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
:
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
fusion produces neutrons of 14.1 MeV (1400 TJ/kg, i.e. 52,000 km/s, 17.3% of the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
) that can easily fission uranium-238 and other non-
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
. *
Neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
occurs in situations in which a nucleus contains enough excess neutrons that the
separation energy In nuclear physics, separation energy is the energy needed to remove one nucleon (or other specified particle or particles) from an atomic nucleus. The separation energy is different for each nuclide and particle to be removed. Values are stated a ...
of one or more neutrons becomes negative (i.e. excess neutrons "
drip Drip or DRIP may refer to: * Mesomycetozoea, a class of eukaryotes also known as the DRIP clade * Drip gas, natural gas condensate * Drip irrigation, in agriculture and gardening * Dripping liquid * Drip email (campaign), the process of automati ...
" out of the nucleus). Unstable nuclei of this sort will often decay in less than one second. Fast neutrons are usually undesirable in a steady-state nuclear reactor because most fissile fuel has a higher reaction rate with thermal neutrons. Fast neutrons can be rapidly changed into thermal neutrons via a process called moderation. This is done through numerous collisions with (in general) slower-moving and thus lower-temperature particles like atomic nuclei and other neutrons. These collisions will generally speed up the other particle and slow down the neutron and scatter it. Ideally, a room temperature neutron moderator is used for this process. In reactors, heavy water, light water, or
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
are typically used to moderate neutrons.


Ultrafast

:*Relativistic :*Greater than 20 MeV


Other classifications

;Pile :*Neutrons of all energies present in nuclear reactors :*0.001 eV to 15 MeV. ; Ultracold :*Neutrons with sufficiently low energy to be reflected and trapped :*Upper bound of 335 neV


Fast-neutron reactor and thermal-neutron reactor compared

Most
fission reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from ...
s are
thermal-neutron reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
s that use a neutron moderator to slow down ("''thermalize''") the neutrons produced by nuclear fission. Moderation substantially increases the fission
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
for
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
nuclei such as
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
or
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
. In addition, uranium-238 has a much lower capture cross section for thermal neutrons, allowing more neutrons to cause fission of fissile nuclei and propagate the chain reaction, rather than being captured by 238U. The combination of these effects allows
light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
s to use
low-enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
.
Heavy water reactor A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water ( deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The ...
s and
graphite-moderated reactor :''"Graphite reactor" directs here. For the graphite reactor at Oak Ridge National Laboratory, see X-10 Graphite Reactor.'' A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium t ...
s can even use natural uranium as these moderators have much lower
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
s than light water.Some Physics of Uranium. Accessed March 7, 2009
/ref> An increase in fuel temperature also raises uranium-238's thermal neutron absorption by
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Dop ...
, providing negative feedback to help control the reactor. When the coolant is a liquid that also contributes to moderation and absorption (light water or heavy water), boiling of the coolant will reduce the moderator density, which can provide positive or negative feedback (a positive or negative
void coefficient In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
), depending on whether the reactor is under- or over-moderated. Intermediate-energy neutrons have poorer fission/capture ratios than either fast or thermal neutrons for most fuels. An exception is the
uranium-233 Uranium-233 (233U or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in exp ...
of the
thorium cycle The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, , as the fertile material. In the reactor, is transmuted into the fissile artificial uranium isotope which is the nuclear fuel. Unlike natural uranium, natural t ...
, which has a good fission/capture ratio at all neutron energies.
Fast-neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
s use unmoderated
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s to sustain the reaction, and require the fuel to contain a higher concentration of fissile material relative to
fertile material Fertile material is a material that, although not itself fissionable by thermal neutrons, can be converted into a fissile material by neutron absorption and subsequent nuclei conversions. Naturally occurring fertile materials Naturally occurring ...
(uranium-238). However, fast neutrons have a better fission/capture ratio for many nuclides, and each fast fission releases a larger number of neutrons, so a
fast breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile mater ...
can potentially "breed" more fissile fuel than it consumes. Fast reactor control cannot depend solely on Doppler broadening or on negative void coefficient from a moderator. However, thermal expansion of the fuel itself can provide quick negative feedback. Perennially expected to be the wave of the future, fast reactor development has been nearly dormant with only a handful of reactors built in the decades since the Chernobyl accident due to low prices in the
uranium market The uranium market, like all commodity markets, has a history of volatility, moving with the standard forces of supply and demand as well as geopolitical pressures. It has also evolved particularities of its own in response to the unique nature and ...
, although there is now a revival with several Asian countries planning to complete larger prototype fast reactors in the next few years.


See also


References

{{Reflist, 2


External links


Language of the Nucleus
Temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
Neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...