Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a
logical argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
that uses the inference rules of a deductive system to establish that the theorem is a
logical consequence Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is on ...
of the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as
Peano arithmetic In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly u ...
. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasoning about them. In this context, statements become well-formed formulas of some formal language. A theory consists of some basis statements called ''axioms'', and some ''deducing rules'' (sometimes included in the axioms). The theorems of the theory are the statements that can be derived from the axioms by using the deducing rules. This formalization led to
proof theory Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
, which allows proving general theorems about theorems and proofs. In particular,
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ...
show that every consistent theory containing the natural numbers has true statements on natural numbers that are not theorems of the theory (that is they cannot be proved inside the theory). As the axioms are often abstractions of properties of the physical world, theorems may be considered as expressing some truth, but in contrast to the notion of a scientific law, which is '' experimental'', the justification of the truth of a theorem is purely deductive.


Theoremhood and truth

Until the end of the 19th century and the foundational crisis of mathematics, all mathematical theories were built from a few basic properties that were considered as self-evident; for example, the facts that every natural number has a successor, and that there is exactly one
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
that passes through two given distinct points. These basic properties that were considered as absolutely evident were called postulates or axioms; for example
Euclid's postulates Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axiom ...
. All theorems were proved by using implicitly or explicitly these basic properties, and, because of the evidence of these basic properties, a proved theorem was considered as a definitive truth, unless there was an error in the proof. For example, the sum of the interior angles of a triangle equals 180°, and this was considered as an undoubtable fact. One aspect of the foundational crisis of mathematics was the discovery of non-Euclidean geometries that do not lead to any contradiction, although, in such geometries, the sum of the angles of a triangle is different from 180°. So, the property ''"the sum of the angles of a triangle equals 180°"'' is either true or false, depending whether Euclid's fifth postulate is assumed or denied. Similarly, the use of "evident" basic properties of sets leads to the contradiction of Russell's paradox. This has been resolved by elaborating the rules that are allowed for manipulating sets. This crisis has been resolved by revisiting the foundations of mathematics to make them more rigorous. In these new foundations, a theorem is a well-formed formula of a
mathematical theory A mathematical theory is a mathematical model of a branch of mathematics that is based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based on known axioms and definitions), and so in this sense can refer to an area o ...
that can be proved from the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s and
inference rules In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of i ...
of the theory. So, the above theorem on the sum of the angles of a triangle becomes: ''Under the axioms and inference rules of Euclidean geometry, the sum of the interior angles of a triangle equals 180°''. Similarly, Russell's paradox disappears because, in an axiomatized set theory, the ''set of all sets'' cannot be expressed with a well-formed formula. More precisely, if the set of all sets can be expressed with a well-formed formula, this implies that the theory is
inconsistent In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent i ...
, and every well-formed assertion, as well as its negation, is a theorem. In this context, the validity of a theorem depends only on the correctness of its proof. It is independent from the truth, or even the significance of the axioms. This does not mean that the significance of the axioms is uninteresting, but only that the validity of a theorem is independent from the significance of the axioms. This independence may be useful by allowing the use of results of some area of mathematics in apparently unrelated areas. An important consequence of this way of thinking about mathematics is that it allows defining mathematical theories and theorems as mathematical objects, and to prove theorems about them. Examples are
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research i ...
. In particular, there are well-formed assertions than can be proved to not be a theorem of the ambient theory, although they can be proved in a wider theory. An example is Goodstein's theorem, which can be stated in
Peano arithmetic In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly u ...
, but is proved to be not provable in Peano arithmetic. However, it is provable in some more general theories, such as Zermelo–Fraenkel set theory.


Epistemological considerations

Many mathematical theorems are conditional statements, whose proofs deduce conclusions from conditions known as hypotheses or premises. In light of the interpretation of proof as justification of truth, the conclusion is often viewed as a necessary consequence of the hypotheses. Namely, that the conclusion is true in case the hypotheses are true—without any further assumptions. However, the conditional could also be interpreted differently in certain deductive systems, depending on the meanings assigned to the derivation rules and the conditional symbol (e.g., non-classical logic). Although theorems can be written in a completely symbolic form (e.g., as propositions in propositional calculus), they are often expressed informally in a natural language such as English for better readability. The same is true of proofs, which are often expressed as logically organized and clearly worded informal arguments, intended to convince readers of the truth of the statement of the theorem beyond any doubt, and from which a formal symbolic proof can in principle be constructed. In addition to the better readability, informal arguments are typically easier to check than purely symbolic ones—indeed, many mathematicians would express a preference for a proof that not only demonstrates the validity of a theorem, but also explains in some way ''why'' it is obviously true. In some cases, one might even be able to substantiate a theorem by using a picture as its proof. Because theorems lie at the core of mathematics, they are also central to its aesthetics. Theorems are often described as being "trivial", or "difficult", or "deep", or even "beautiful". These subjective judgments vary not only from person to person, but also with time and culture: for example, as a proof is obtained, simplified or better understood, a theorem that was once difficult may become trivial. On the other hand, a deep theorem may be stated simply, but its proof may involve surprising and subtle connections between disparate areas of mathematics. Fermat's Last Theorem is a particularly well-known example of such a theorem.


Informal account of theorems

Logically Logic is the study of correct reasoning. It includes both Mathematical logic, formal and informal logic. Formal logic is the science of Validity (logic), deductively valid inferences or of logical truths. It is a formal science investigating h ...
, many theorems are of the form of an indicative conditional: ''If A, then B''. Such a theorem does not assert ''B'' — only that ''B'' is a necessary consequence of ''A''. In this case, ''A'' is called the ''hypothesis'' of the theorem ("hypothesis" here means something very different from a
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 19 ...
), and ''B'' the ''conclusion'' of the theorem. The two together (without the proof) are called the ''proposition'' or ''statement'' of the theorem (e.g. "''If A, then B''" is the ''proposition''). Alternatively, ''A'' and ''B'' can be also termed the '' antecedent'' and the '' consequent'', respectively. The theorem "If ''n'' is an even natural number, then ''n''/2 is a natural number" is a typical example in which the hypothesis is "''n'' is an even natural number", and the conclusion is "''n''/2 is also a natural number". In order for a theorem to be proved, it must be in principle expressible as a precise, formal statement. However, theorems are usually expressed in natural language rather than in a completely symbolic form—with the presumption that a formal statement can be derived from the informal one. It is common in mathematics to choose a number of hypotheses within a given language and declare that the theory consists of all statements provable from these hypotheses. These hypotheses form the foundational basis of the theory and are called
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s or postulates. The field of mathematics known as
proof theory Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
studies formal languages, axioms and the structure of proofs. Some theorems are " trivial", in the sense that they follow from definitions, axioms, and other theorems in obvious ways and do not contain any surprising insights. Some, on the other hand, may be called "deep", because their proofs may be long and difficult, involve areas of mathematics superficially distinct from the statement of the theorem itself, or show surprising connections between disparate areas of mathematics. A theorem might be simple to state and yet be deep. An excellent example is Fermat's Last Theorem, and there are many other examples of simple yet deep theorems in number theory and
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
, among other areas. Other theorems have a known proof that cannot easily be written down. The most prominent examples are the four color theorem and the Kepler conjecture. Both of these theorems are only known to be true by reducing them to a computational search that is then verified by a computer program. Initially, many mathematicians did not accept this form of proof, but it has become more widely accepted. The mathematician Doron Zeilberger has even gone so far as to claim that these are possibly the only nontrivial results that mathematicians have ever proved. Many mathematical theorems can be reduced to more straightforward computation, including polynomial identities, trigonometric identities and hypergeometric identities.


Relation with scientific theories

Theorems in mathematics and theories in science are fundamentally different in their epistemology. A scientific theory cannot be proved; its key attribute is that it is falsifiable, that is, it makes predictions about the natural world that are testable by experiments. Any disagreement between prediction and experiment demonstrates the incorrectness of the scientific theory, or at least limits its accuracy or domain of validity. Mathematical theorems, on the other hand, are purely abstract formal statements: the proof of a theorem cannot involve experiments or other empirical evidence in the same way such evidence is used to support scientific theories. Nonetheless, there is some degree of empiricism and data collection involved in the discovery of mathematical theorems. By establishing a pattern, sometimes with the use of a powerful computer, mathematicians may have an idea of what to prove, and in some cases even a plan for how to set about doing the proof. It is also possible to find a single counter-example and so establish the impossibility of a proof for the proposition as-stated, and possibly suggest restricted forms of the original proposition that might have feasible proofs. For example, both the Collatz conjecture and the
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
are well-known unsolved problems; they have been extensively studied through empirical checks, but remain unproven. The Collatz conjecture has been verified for start values up to about 2.88 × 1018. The
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
has been verified to hold for the first 10 trillion non-trivial zeroes of the
zeta function In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function : \zeta(s) = \sum_^\infty \frac 1 . Zeta functions include: * Airy zeta function, related to the zeros of the Airy function * A ...
. Although most mathematicians can tolerate supposing that the conjecture and the hypothesis are true, neither of these propositions is considered proved. Such evidence does not constitute proof. For example, the
Mertens conjecture In mathematics, the Mertens conjecture is the statement that the Mertens function M(n) is bounded by \pm\sqrt. Although now disproven, it had been shown to imply the Riemann hypothesis. It was conjectured by Thomas Joannes Stieltjes, in an 1885 ...
is a statement about natural numbers that is now known to be false, but no explicit counterexample (i.e., a natural number ''n'' for which the Mertens function ''M''(''n'') equals or exceeds the square root of ''n'') is known: all numbers less than 1014 have the Mertens property, and the smallest number that does not have this property is only known to be less than the exponential of 1.59 × 1040, which is approximately 10 to the power 4.3 × 1039. Since the number of particles in the universe is generally considered less than 10 to the power 100 (a
googol A googol is the large number 10100. In decimal notation, it is written as the digit 1 followed by one hundred zeroes: 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, ...
), there is no hope to find an explicit counterexample by exhaustive search. The word "theory" also exists in mathematics, to denote a body of mathematical axioms, definitions and theorems, as in, for example, group theory (see
mathematical theory A mathematical theory is a mathematical model of a branch of mathematics that is based on a set of axioms. It can also simultaneously be a body of knowledge (e.g., based on known axioms and definitions), and so in this sense can refer to an area o ...
). There are also "theorems" in science, particularly physics, and in engineering, but they often have statements and proofs in which physical assumptions and intuition play an important role; the physical axioms on which such "theorems" are based are themselves falsifiable.


Terminology

A number of different terms for mathematical statements exist; these terms indicate the role statements play in a particular subject. The distinction between different terms is sometimes rather arbitrary, and the usage of some terms has evolved over time. * An ''
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
'' or ''postulate'' is a fundamental assumption regarding the object of study, that is accepted without proof. A related concept is that of a ''
definition A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
'', which gives the meaning of a word or a phrase in terms of known concepts. Classical geometry discerns between axioms, which are general statements; and postulates, which are statements about geometrical objects. Historically, axioms were regarded as " self-evident"; today they are merely ''assumed'' to be true. * A ''
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 19 ...
'' is an unproved statement that is believed to be true. Conjectures are usually made in public, and named after their maker (for example,
Goldbach's conjecture Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold ...
and Collatz conjecture). The term ''hypothesis'' is also used in this sense (for example,
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
), which should not be confused with "hypothesis" as the premise of a proof. Other terms are also used on occasion, for example ''problem'' when people are not sure whether the statement should be believed to be true. Fermat's Last Theorem was historically called a theorem, although, for centuries, it was only a conjecture. * A ''theorem'' is a statement that has been proven to be true based on axioms and other theorems. * A '' proposition'' is a theorem of lesser importance, or one that is considered so elementary or immediately obvious, that it may be stated without proof. This should not be confused with "proposition" as used in propositional logic. In classical geometry the term "proposition" was used differently: in Euclid's ''Elements'' (), all theorems and geometric constructions were called "propositions" regardless of their importance. * A ''
lemma Lemma may refer to: Language and linguistics * Lemma (morphology), the canonical, dictionary or citation form of a word * Lemma (psycholinguistics), a mental abstraction of a word about to be uttered Science and mathematics * Lemma (botany), a ...
'' is an "accessory proposition" - a proposition with little applicability outside its use in a particular proof. Over time a lemma may gain in importance and be considered a ''theorem'', though the term "lemma" is usually kept as part of its name (e.g.
Gauss's lemma Gauss's lemma can mean any of several lemmas named after Carl Friedrich Gauss: * * * * A generalization of Euclid's lemma is sometimes called Gauss's lemma See also * List of topics named after Carl Friedrich Gauss Carl Friedrich Gauss ( ...
, Zorn's lemma, and the fundamental lemma). * A ''
corollary In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
'' is a proposition that follows immediately from another theorem or axiom, with little or no required proof. A corollary may also be a restatement of a theorem in a simpler form, or for a
special case In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of . A limiting case is ...
: for example, the theorem "all internal angles in a
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
are
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s" has a corollary that "all internal angles in a '' square'' are
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s" - a square being a special case of a rectangle. * A '' generalization'' of a theorem is a theorem with a similar statement but a broader scope, from which the original theorem can be deduced as a
special case In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of . A limiting case is ...
(a ''corollary''). Other terms may also be used for historical or customary reasons, for example: * An ''
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), ...
'' is a theorem stating an equality between two expressions, that holds for any value within its
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
(e.g.
Bézout's identity In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout, is the following theorem: Here the greatest common divisor of and is taken to be . The integers and are called Bézout coefficients for ; they a ...
and
Vandermonde's identity In combinatorics, Vandermonde's identity (or Vandermonde's convolution) is the following identity for binomial coefficients: :=\sum_^r for any nonnegative integers ''r'', ''m'', ''n''. The identity is named after Alexandre-Théophile Vandermo ...
). * A ''rule'' is a theorem that establishes a useful formula (e.g.
Bayes' rule In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For examp ...
and
Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants o ...
). * A '' law'' or ''
principle A principle is a proposition or value that is a guide for behavior or evaluation. In law, it is a Legal rule, rule that has to be or usually is to be followed. It can be desirably followed, or it can be an inevitable consequence of something, suc ...
'' is a theorem with wide applicability (e.g. the
law of large numbers In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials shou ...
, law of cosines, Kolmogorov's zero–one law, Harnack's principle, the
least-upper-bound principle In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if ev ...
, and the pigeonhole principle). A few well-known theorems have even more idiosyncratic names, for example, the division algorithm, Euler's formula, and the Banach–Tarski paradox.


Layout

A theorem and its proof are typically laid out as follows: :''Theorem'' (name of the person who proved it, along with year of discovery or publication of the proof) :''Statement of theorem (sometimes called the ''proposition'')'' :''Proof'' :''Description of proof'' :''End'' The end of the proof may be signaled by the letters
Q.E.D. Q.E.D. or QED is an initialism of the Latin phrase , meaning "which was to be demonstrated". Literally it states "what was to be shown". Traditionally, the abbreviation is placed at the end of mathematical proofs and philosophical arguments in pri ...
(''quod erat demonstrandum'') or by one of the tombstone marks, such as "□" or "∎", meaning "end of proof", introduced by Paul Halmos following their use in magazines to mark the end of an article. The exact style depends on the author or publication. Many publications provide instructions or macros for typesetting in the house style. It is common for a theorem to be preceded by
definition A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
s describing the exact meaning of the terms used in the theorem. It is also common for a theorem to be preceded by a number of propositions or lemmas which are then used in the proof. However, lemmas are sometimes embedded in the proof of a theorem, either with nested proofs, or with their proofs presented after the proof of the theorem. Corollaries to a theorem are either presented between the theorem and the proof, or directly after the proof. Sometimes, corollaries have proofs of their own that explain why they follow from the theorem.


Lore

It has been estimated that over a quarter of a million theorems are proved every year. The well-known aphorism, "A mathematician is a device for turning coffee into theorems", is probably due to
Alfréd Rényi Alfréd Rényi (20 March 1921 – 1 February 1970) was a Hungarian mathematician known for his work in probability theory, though he also made contributions in combinatorics, graph theory, and number theory. Life Rényi was born in Budapest to ...
, although it is often attributed to Rényi's colleague
Paul Erdős Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in ...
(and Rényi may have been thinking of Erdős), who was famous for the many theorems he produced, the number of his collaborations, and his coffee drinking. The classification of finite simple groups is regarded by some to be the longest proof of a theorem. It comprises tens of thousands of pages in 500 journal articles by some 100 authors. These papers are together believed to give a complete proof, and several ongoing projects hope to shorten and simplify this proof. Another theorem of this type is the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
whose computer generated proof is too long for a human to read. It is among the longest known proofs of a theorem whose statement can be easily understood by a layman.


Theorems in logic

In mathematical logic, a formal theory is a set of sentences within a formal language. A sentence is a well-formed formula with no free variables. A sentence that is a member of a theory is one of its theorems, and the theory is the set of its theorems. Usually a theory is understood to be closed under the relation of
logical consequence Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is on ...
. Some accounts define a theory to be closed under the semantic consequence relation (\models), while others define it to be closed under the
syntactic consequence Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statement (logic), statements that hold true when one statement logically ''follows from'' one or more statements. A Validity (lo ...
, or derivability relation (\vdash).van Dalen, p. 104. For a theory to be closed under a derivability relation, it must be associated with a deductive system that specifies how the theorems are derived. The deductive system may be stated explicitly, or it may be clear from the context. The closure of the empty set under the relation of logical consequence yields the set that contains just those sentences that are the theorems of the deductive system. In the broad sense in which the term is used within logic, a theorem does not have to be true, since the theory that contains it may be unsound relative to a given semantics, or relative to the standard
interpretation Interpretation may refer to: Culture * Aesthetic interpretation, an explanation of the meaning of a work of art * Allegorical interpretation, an approach that assumes a text should not be interpreted literally * Dramatic Interpretation, an event ...
of the underlying language. A theory that is
inconsistent In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent i ...
has all sentences as theorems. The definition of theorems as sentences of a formal language is useful within
proof theory Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
, which is a branch of mathematics that studies the structure of formal proofs and the structure of provable formulas. It is also important in
model theory In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the s ...
, which is concerned with the relationship between formal theories and structures that are able to provide a semantics for them through
interpretation Interpretation may refer to: Culture * Aesthetic interpretation, an explanation of the meaning of a work of art * Allegorical interpretation, an approach that assumes a text should not be interpreted literally * Dramatic Interpretation, an event ...
. Although theorems may be uninterpreted sentences, in practice mathematicians are more interested in the meanings of the sentences, i.e. in the propositions they express. What makes formal theorems useful and interesting is that they may be interpreted as true propositions and their derivations may be interpreted as a proof of their truth. A theorem whose interpretation is a true statement ''about'' a formal system (as opposed to ''within'' a formal system) is called a '' metatheorem''. Some important theorems in mathematical logic are: * Compactness of first-order logic * Completeness of first-order logic * Gödel's incompleteness theorems of first-order arithmetic * Consistency of first-order arithmetic *
Tarski's undefinability theorem Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that ''arithmetical truth ...
* Church-Turing theorem of undecidability * Löb's theorem *
Löwenheim–Skolem theorem In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-order t ...
*
Lindström's theorem In mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the '' strongest logic'' (satisfying certain conditions, e.g. closure under classical negation) h ...
* Craig's theorem * Cut-elimination theorem


Syntax and semantics

The concept of a formal theorem is fundamentally syntactic, in contrast to the notion of a ''true proposition,'' which introduces semantics. Different deductive systems can yield other interpretations, depending on the presumptions of the derivation rules (i.e. belief,
justification Justification may refer to: * Justification (epistemology), a property of beliefs that a person has good reasons for holding * Justification (jurisprudence), defence in a prosecution for a criminal offenses * Justification (theology), God's act of ...
or other modalities). The soundness of a formal system depends on whether or not all of its theorems are also validities. A validity is a formula that is true under any possible interpretation (for example, in classical propositional logic, validities are tautologies). A formal system is considered semantically complete when all of its theorems are also tautologies.


Interpretation of a formal theorem


Theorems and theories


See also

* Law (mathematics) * List of theorems * List of theorems called fundamental *
Formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
*
Inference Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in ...
*
Toy theorem In mathematics, a toy theorem is a simplified instance (special case) of a more general theorem, which can be useful in providing a handy representation of the general theorem, or a framework for proving the general theorem. One way of obtaining a ...


Notes


References


References

* * * * * * * * * * * * * * *


External links

* *
Theorem of the Day
{{Authority control Logical consequence Logical expressions Mathematical proofs Mathematical terminology Statements Concepts in logic de:Theorem