Tauber's Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Abelian and Tauberian theorems are
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
s giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/''n'')) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give similar results for more general summation methods. There is not yet a clear distinction between Abelian and Tauberian theorems, and no generally accepted definition of what these terms mean. Often, a theorem is called "Abelian" if it shows that some summation method gives the usual sum for convergent series, and is called "Tauberian" if it gives conditions for a series summable by some method that allows it to be summable in the usual sense. In the theory of integral transforms, Abelian theorems give the asymptotic behaviour of the transform based on properties of the original function. Conversely, Tauberian theorems give the asymptotic behaviour of the original function based on properties of the transform but usually require some restrictions on the original function.


Abelian theorems

For any summation method ''L'', its Abelian theorem is the result that if ''c'' = (''c''''n'') is a convergent sequence, with
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
''C'', then ''L''(''c'') = ''C''. An example is given by the Cesàro method, in which ''L'' is defined as the limit of the
arithmetic mean In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the ''mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The colle ...
s of the first ''N'' terms of ''c'', as ''N'' tends to infinity. One can
prove Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
that if ''c'' does converge to ''C'', then so does the sequence (''d''''N'') where : d_N = \frac N. To see that, subtract ''C'' everywhere to reduce to the case ''C'' = 0. Then divide the sequence into an initial segment, and a tail of small terms: given any ε > 0 we can take ''N'' large enough to make the initial segment of terms up to ''c''''N'' average to at most ''ε''/2, while each term in the tail is bounded by ε/2 so that the average is also necessarily bounded. The name derives from Abel's theorem on
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
. In that case ''L'' is the ''radial limit'' (thought of within the complex
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose di ...
), where we let ''r'' tend to the limit 1 from below along the real axis in the power series with term : ''a''''n''''z''''n'' and set ''z'' = ''r'' ·''e''''iθ''. That theorem has its main interest in the case that the power series has radius of convergence exactly 1: if the radius of convergence is greater than one, the convergence of the power series is
uniform A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, se ...
for ''r'' in ,1so that the sum is automatically
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
and it follows directly that the limit as ''r'' tends up to 1 is simply the sum of the ''a''''n''. When the radius is 1 the power series will have some singularity on , ''z'', = 1; the assertion is that, nonetheless, if the sum of the ''a''''n'' exists, it is equal to the limit over ''r''. This therefore fits exactly into the abstract picture.


Tauberian theorems

Partial converses to Abelian theorems are called Tauberian theorems. The original result of stated that if we assume also :''a''''n'' = o(1/''n'') (see Little o notation) and the radial limit exists, then the series obtained by setting ''z'' = 1 is actually convergent. This was strengthened by John Edensor Littlewood: we need only assume O(1/''n''). A sweeping generalization is the Hardy–Littlewood Tauberian theorem. In the abstract setting, therefore, an ''Abelian'' theorem states that the domain of ''L'' contains the convergent sequences, and its values there are equal to those of the ''Lim'' functional. A ''Tauberian'' theorem states, under some growth condition, that the domain of ''L'' is exactly the convergent sequences and no more. If one thinks of ''L'' as some generalised type of ''weighted average'', taken to the limit, a Tauberian theorem allows one to discard the weighting, under the correct hypotheses. There are many applications of this kind of result in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, in particular in handling Dirichlet series. The development of the field of Tauberian theorems received a fresh turn with
Norbert Wiener Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and philosopher. He was a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher i ...
's very general results, namely Wiener's Tauberian theorem and its large collection of corollaries. The central theorem can now be proved by Banach algebra methods, and contains much, though not all, of the previous theory.


See also

* Wiener's Tauberian theorem * Hardy–Littlewood Tauberian theorem *
Haar's Tauberian theorem In mathematical analysis, Haar's Tauberian theorem named after Alfréd Haar, relates the asymptotic behaviour of a continuous function to properties of its Laplace transform. It is related to the integral formulation of the Hardy–Littlewood Taube ...


References


External links

* * * {{cite book , first1=Hugh L., last1= Montgomery , authorlink=Hugh Montgomery (mathematician) , author2-link=Robert Charles Vaughan (mathematician), first2=Robert C., last2= Vaughan , title=Multiplicative number theory I. Classical theory , series=Cambridge Studies in Advanced Mathematics , volume=97 , year=2007 , isbn=978-0-521-84903-6 , pages=147–167 , publisher=
Cambridge University Press Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing hou ...
, place=Cambridge , mr=2378655, zbl=1142.11001 Tauberian theorems Mathematical series Summability methods Summability theory