Transcription activator-like effector nucleases (TALEN) are
restriction enzyme
A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class o ...
s that can be engineered to cut specific sequences of DNA. They are made by fusing a
TAL effector
TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by some β- and γ-proteobacteria. Most of these are Xan ...
DNA-binding domain
A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a gener ...
to a DNA cleavage domain (a
nuclease which cuts DNA strands). Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations.
The restriction enzymes can be introduced into cells, for use in
gene editing or for
genome
In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
editing ''
in situ
''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
'', a technique known as
genome editing with engineered nucleases. Alongside
zinc finger nucleases
Zinc-finger nucleases (ZFNs) are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences and this enables zinc ...
and
CRISPR/Cas9, TALEN is a prominent tool in the field of
genome editing
Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts ...
.
TALE DNA-binding domain
TAL effector
TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by some β- and γ-proteobacteria. Most of these are Xan ...
s are proteins that are secreted by ''
Xanthomonas
''Xanthomonas'' (from greek: ''xanthos'' – “yellow”; ''monas'' – “entity”) is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated ''Xanthomonas spp.'', that all together infect at least 400 ...
'' bacteria via their
type III secretion system
The type III secretion system (T3SS or TTSS), also called the injectisome, is one of the bacterial secretion systems used by bacteria to secrete their effector proteins into the host's cells to promote virulence and colonisation. The T3SS is a ...
when they
infect plants.
The DNA binding domain contains a repeated highly conserved 33–34
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
sequence with divergent 12th and 13th amino acids. These two positions, referred to as the Repeat Variable Diresidue (RVD), are highly variable and show a strong correlation with specific
nucleotide
Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecule ...
recognition. This straightforward relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA-binding domains by selecting a combination of repeat segments containing the appropriate RVDs.
[ Notably, slight changes in the RVD and the incorporation of "nonconventional" RVD sequences can improve targeting specificity.
]
DNA cleavage domain
The non-specific DNA cleavage domain from the end of the FokI
The restriction endonuclease ''Fok''1, naturally found in ''Flavobacterium okeanokoites'', is a bacterial type IIS restriction endonuclease consisting of an N-terminal DNA-binding domain and a non-specific DNA cleavage domain at the C-terminal. ...
endonuclease can be used to construct hybrid nucleases that are active in a yeast assay. These reagents are also active in plant cells and in animal cells. Initial TALEN studies used the wild-type FokI cleavage domain, but some subsequent TALEN studies also used FokI cleavage domain variants with mutations designed to improve cleavage specificity and cleavage activity. The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity.
Engineering TALEN constructs
The simple relationship between amino acid sequence and DNA recognition of the TALE binding domain allows for the efficient engineering of proteins. In this case, artificial gene synthesis
Artificial gene synthesis, or simply gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides '' de novo''. Unlike DNA synthesis in living cells, artificial gene synthesis d ...
is problematic because of improper annealing of the repetitive sequence found in the TALE binding domain. One solution to this is to use a publicly available software program (DNAWorks) to calculate oligonucleotides
Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
suitable for assembly in a two step PCR oligonucleotide assembly followed by whole gene amplification. A number of modular assembly schemes for generating engineered TALE constructs have also been reported. Both methods offer a systematic approach to engineering DNA binding domains that is conceptually similar to the modular assembly method for generating zinc finger
A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. It was originally coined to describe the finger-like appearance of a hypothesized struct ...
DNA recognition domains.
Transfection
Once the TALEN constructs have been assembled, they are inserted into plasmids; the target cells are then transfected
Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to desc ...
with the plasmids, and the gene products are expressed and enter the nucleus to access the genome. Alternatively, TALEN constructs can be delivered to the cells as mRNAs, which removes the possibility of genomic integration of the TALEN-expressing protein. Using an mRNA vector can also dramatically increase the level of homology directed repair (HDR) and the success of introgression during gene editing.
Genome editing
Mechanisms
TALEN can be used to edit genomes by inducing double-strand breaks (DSB), which cells respond to with repair mechanisms.
Non-homologous end joining
Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direc ...
(NHEJ) directly ligates DNA from either side of a double-strand break where there is very little or no sequence overlap for annealing. This repair mechanism induces errors in the genome via indel
Indel is a molecular biology term for an insertion or deletion of bases in the genome of an organism. It is classified among small genetic variations, measuring from 1 to 10 000 base pairs in length, including insertion and deletion events that ...
s (insertion or deletion), or chromosomal rearrangement; any such errors may render the gene products coded at that location non-functional.[ Because this activity can vary depending on the species, cell type, target gene, and nuclease used, it should be monitored when designing new systems. A simple heteroduplex cleavage assay can be run which detects any difference between two alleles amplified by PCR. Cleavage products can be visualized on simple agarose gels or slab gel systems.
Alternatively, DNA can be introduced into a genome through NHEJ in the presence of exogenous double-stranded DNA fragments.][
Homology directed repair can also introduce foreign DNA at the DSB as the transfected double-stranded sequences are used as templates for the repair enzymes.][
]
Applications
TALEN has been used to efficiently modify plant genomes, creating economically important food crops with favorable nutritional qualities. They have also been harnessed to develop tools for the production of biofuels. In addition, it has been used to engineer stably modified human embryonic stem cell
Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist ...
and induced pluripotent stem cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in ...
(IPSCs) clones and human erythroid cell lines, to generate knockout ''C. elegans
''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
'', knockout rat
A knockout rat is a genetically engineered rat with a single gene turned off through a targeted mutation (gene trapping) used for academic and pharmaceutical research. Knockout rats can mimic human diseases and are important tools for studying ...
s, knockout mice, and knockout zebrafish
The zebrafish (''Danio rerio'') is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often ca ...
. Moreover, the method can be used to generate knockin organisms. Wu et al.obtained a Sp110 knockin cattle using Talen nickases to induce increased resistance of tuberculosis. This approach has also been used to generate knockin rats by TALEN mRNA microinjection in one-cell embryos.
TALEN has also been utilized experimentally to correct the genetic errors that underlie disease. For example, it has been used ''in vitro'' to correct the genetic defects that cause disorders such as sickle cell disease
Sickle cell disease (SCD) is a group of blood disorders typically inherited from a person's parents. The most common type is known as sickle cell anaemia. It results in an abnormality in the oxygen-carrying protein haemoglobin found in red b ...
, xeroderma pigmentosum
Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in su ...
, and epidermolysis bullosa
Epidermolysis bullosa (EB) is a group of rare medical conditions that result in easy blistering of the skin and mucous membranes. Blisters occur with minor trauma or friction and are painful. Its severity can range from mild to fatal. Inherited E ...
. Recently, it was shown that TALEN can be used as tools to harness the immune system to fight cancers; TALEN-mediated targeting can generate T cells that are resistant to chemotherapeutic drugs and show anti-tumor activity.
In theory, the genome-wide specificity of engineered TALEN fusions allows for correction of errors at individual genetic loci via homology-directed repair from a correct exogenous template. In reality, however, the ''in situ'' application of TALEN is currently limited by the lack of an efficient delivery mechanism, unknown immunogenic factors, and uncertainty in the specificity of TALEN binding.
Another emerging application of TALEN is its ability to combine with other genome engineering tools, such as meganuclease Meganucleases are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs); as a result this site generally occurs only once in any given genome. For example, the 18-base pair sequence ...
s. The DNA binding region of a TAL effector can be combined with the cleavage domain of a meganuclease to create a hybrid architecture combining the ease of engineering and highly specific DNA binding activity of a TAL effector with the low site frequency and specificity of a meganuclease.
In comparison to other genome editing techniques TALEN falls in the middle in terms of difficulty and cost. Unlike ZFNs, TALEN recognizes single nucleotides. It's far more straightforward to engineer interactions between TALEN DNA binding domains and their target nucleotides than it is to create interactions with ZFNs and their target nucleotide triplets. On the other hand, CRISPR relies on ribonucleotide complex formation instead of protein/DNA recognition. gRNAs have occasionally limitations regarding feasibility due to lack of PAM sites in the target sequence and even though they can be cheaply produced, the current development lead to a remarkable decrease of cost for TALENs, so that they are in a similar price and time range like CRISPR based genome editing.
TAL effector nuclease precision
The off-target activity of an active nuclease may lead to unwanted double-strand breaks and may consequently yield chromosomal rearrangements and/or cell death. Studies have been carried out to compare the relative nuclease-associated toxicity of available technologies. Based on these studies and the maximal theoretical distance between DNA binding and nuclease activity, TALEN constructs are believed to have the greatest precision of the currently available technologies.
See also
* Genome editing with engineered nucleases
* Zinc finger nuclease
Zinc-finger nucleases (ZFNs) are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target specific desired DNA sequences and this enables zin ...
* Meganuclease Meganucleases are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs); as a result this site generally occurs only once in any given genome. For example, the 18-base pair sequence ...
* CRISPR
References
{{reflist, 35em
External links
E-TALEN.org
A comprehensive tool for TALEN design
PDB Molecule of the Month
An entry in the Protein Database's monthly structural highlight
Biological engineering
DNA
Emerging technologies
Genetic engineering
Genome editing
History of biotechnology
Molecular biology
Non-coding RNA
Repetitive DNA sequences