HOME

TheInfoList



OR:

The Taguchi loss function is graphical depiction of loss developed by the Japanese business statistician
Genichi Taguchi was an engineer and statistician. From the 1950s onwards, Taguchi developed a methodology for applying statistics to improve the quality of manufactured goods. Taguchi methods have been controversial among some conventional Western statisticians, ...
to describe a phenomenon affecting the value of products produced by a company. Praised by Dr. W. Edwards Deming (the business guru of the 1980s American quality movement), it made clear the concept that quality does not suddenly plummet when, for instance, a machinist exceeds a rigid blueprint tolerance. Instead 'loss' in value progressively increases as variation increases from the intended condition. This was considered a breakthrough in describing quality, and helped fuel the continuous improvement movement. The concept of Taguchi's quality loss function was in contrast with the American concept of quality, popularly known as goal post philosophy, the concept given by American quality guru Phil Crosby. Goal post philosophy emphasizes that if a product feature doesn't meet the designed specifications it is termed as a product of poor quality (rejected), irrespective of amount of deviation from the target value (mean value of tolerance zone). This concept has similarity with the concept of scoring a 'goal' in the game of football or hockey, because a goal is counted 'one' irrespective of the location of strike of the ball in the 'goal post', whether it is in the center or towards the corner. This means that if the product dimension goes out of the tolerance limit the quality of the product drops suddenly. Through his concept of the quality loss function, Taguchi explained that from the customer's point of view this drop of quality is not sudden. The customer experiences a loss of quality the moment product specification deviates from the 'target value'. This 'loss' is depicted by a quality loss function and it follows a parabolic curve mathematically given by ''L = k''(''y–m'')2, where ''m'' is the theoretical 'target value' or 'mean value' and ''y'' is the actual size of the product, ''k'' is a constant and ''L'' is the loss. This means that if the difference between 'actual size' and 'target value' i.e. (''y''–''m'') is large, loss would be more, irrespective of tolerance specifications. In Taguchi's view tolerance specifications are given by engineers and not by customers; what the customer experiences is 'loss'. This equation is true for a single product; if 'loss' is to be calculated for multiple products the loss function is given by ''L = k'' 'S''2 + (\bar – m)2 where ''S''2 is the 'variance of product size' and \bar is the average product size.


Overview

The Taguchi loss function is important for a number of reasons—primarily, to help engineers better understand the importance of designing for
variation Variation or Variations may refer to: Science and mathematics * Variation (astronomy), any perturbation of the mean motion or orbit of a planet or satellite, particularly of the moon * Genetic variation, the difference in DNA among individual ...
.


See also

*
Taguchi methods Taguchi methods ( ja, タグチメソッド) are statistical methods, sometimes called robust design methods, developed by Genichi Taguchi to improve the quality of manufactured goods, and more recently also applied to engineering, biotechnology, ...
Taguchi also focus on Robust design of model.


References

{{reflist Loss functions