Taffy Bowen
   HOME

TheInfoList



OR:

Edward George "Taffy" Bowen, CBE, FRS (14 January 1911 – 12 August 1991) was a Welsh physicist who made a major contribution to the development of radar. He was also an early radio astronomer, playing a key role in the establishment of radioastronomy in Australia and the United States.


Early years

Edward George Bowen was born at Cockett in
Swansea Swansea (; cy, Abertawe ) is a coastal city and the second-largest city of Wales. It forms a principal area, officially known as the City and County of Swansea ( cy, links=no, Dinas a Sir Abertawe). The city is the twenty-fifth largest in ...
, south Wales, to George Bowen and Ellen Ann (née Owen). George Bowen was a steelworker in a Swansea tinplate works. From an early age Bowen developed a strong interest in radio and
cricket Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by striki ...
. He entered Swansea University and read physics and related subjects. He graduated with a First-Class Honours degree in 1930, and continued with postgraduate research on X-rays and the structure of alloys, earning an MSc in 1931. He completed his doctorate under Professor E.V. Appleton at
King's College London King's College London (informally King's or KCL) is a public research university located in London, England. King's was established by royal charter in 1829 under the patronage of King George IV and the Duke of Wellington. In 1836, King's ...
. As part of his research, Bowen spent a large part of 1933 and 1934 working with a cathode-ray direction finder at the
Radio Research Station The Radio Research Board was formed by the Department of Scientific and Industrial Research in 1920. The Radio Research Station (1924 – 31 August 1979) at Ditton Park, Near Slough, Berkshire, England was the UK government research laboratory wh ...
at
Slough Slough () is a town and unparished area in the unitary authority of the same name in Berkshire, England, bordering west London. It lies in the Thames Valley, west of central London and north-east of Reading, at the intersection of the M4 ...
, and it was there that he was noticed by Robert Watson-Watt and so came to play a part in the early history of radar. In 1935 he was recruited by Watson-Watt to work in the Radar Development Team as a Junior Scientific Officer.


Ground-based radar

A Committee for the Scientific Study of Air Defence had been established under the chairmanship of Henry Tizard. Before the first meeting of that committee in early 1935, the Government asked Watson-Watt whether an intense beam of radio waves, a "death ray", could bring down an aircraft. Watson-Watt reported that a "death ray" was impracticable, but suggested that radio waves might be used to detect, rather than destroy, enemy aircraft. After a successful demonstration in February 1935 of the reflection of radio waves by an aircraft, the development of radar went ahead, and a team of five people including Bowen was set up at Orfordness under the cover of doing ionospheric research. Bowen's job was to assemble a transmitter, managing quickly to raise the pulse-power to over 100 kilowatts. The first detection of an aircraft was made on 17 June 1935 at a range of 17 miles. By early 1936 after many improvements, aircraft were being detected at ranges of up to 100 miles. This caused work to be started on a chain of radar stations (
Chain Home Chain Home, or CH for short, was the codename for the ring of coastal Early Warning radar stations built by the Royal Air Force (RAF) before and during the Second World War to detect and track aircraft. Initially known as RDF, and given the off ...
or CH), initially just covering the approaches to London. The team at Orfordness was enlarged as a result, and in March 1936 a new headquarters was acquired at Bawdsey Manor. Bowen, at his own request, was moved on to investigating whether radar could be installed in an aircraft. However, Bowen was able to save the day when a demonstration of the new transmitter at Bawdsey Manor failed. Before a disgruntled Sir Hugh Dowding returned to London, Bowen gave him an impromptu demonstration of an experimental radar, built as part of his airborne radar programme, which was detecting the aircraft at ranges of up to 50 miles. After working through the night, Bowen resurrected the old transmitter at
Orford Ness Orford Ness is a cuspate foreland shingle spit on the Suffolk coast in Great Britain, linked to the mainland at Aldeburgh and stretching along the coast to Orford and down to North Weir Point, opposite Shingle Street. It is divided from the m ...
for the following day's demonstration, allowing the Government and RAF to continue with the extension of the chain of coastal stations.


Airborne radar

Installing radar in an aircraft was difficult because of the size and weight of the equipment and the aerial. Furthermore, the equipment had to operate in a vibrating and cold environment. Over the next few years Bowen and his group solved most of these problems. For example, he solved the problem of the power supply in aircraft by using an engine-driven alternator, and he encouraged
Imperial Chemical Industries Imperial Chemical Industries (ICI) was a British chemical company. It was, for much of its history, the largest manufacturer in Britain. It was formed by the merger of four leading British chemical companies in 1926. Its headquarters were at M ...
(ICI) to produce the first radio-frequency cables with solid
polythene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
insulation Insulation may refer to: Thermal * Thermal insulation, use of materials to reduce rates of heat transfer ** List of insulation materials ** Building insulation, thermal insulation added to buildings for comfort and energy efficiency *** Insulated ...
. Further refinements continued until September 1937, when Bowen gave a dramatic and uninvited demonstration of the application of radar by searching for the
British Fleet The Royal Navy (RN) is the United Kingdom's naval warfare force. Although warships were used by English and Scottish kings from the early medieval period, the first major maritime engagements were fought in the Hundred Years' War against F ...
in the North Sea in poor visibility, detecting three capital ships. Bowen's airborne radar group now had two major projects, one for the detection of ships and the other for interception of aircraft. Bowen also experimented briefly with the use of airborne radar to detect features on the ground, such as towns and coastlines, to aid navigation.


Second World War

On the outbreak of the Second World War, Bowen's unit was moved to St Athan. One of the first things that Bowen did there was to try to detect a submarine by radar. By then, the cavity magnetron had been improved by John Randall and Harry Boot, making airborne radar a powerful tool. By December 1940, operational aircraft were able to detect submarines at up to 15 miles range. This technology had a major effect on winning the
Battle of the Atlantic The Battle of the Atlantic, the longest continuous military campaign in World War II, ran from 1939 to the defeat of Nazi Germany in 1945, covering a major part of the naval history of World War II. At its core was the Allied naval blockade ...
which eventually enabled forces to be built up by sea for the invasion of Europe. In April 1941, RAF Coastal Command was operating anti-submarine patrols with about 110 aircraft fitted with radar. This increased the detection of submarines both day and night. However, very few of the attacks were lethal until the introduction in mid-1942 of a powerful searchlight, the Leigh light, that illuminated the submarine. As a result, the U-boats had to recharge their batteries in daylight so that they could at least see the aircraft coming. The radar and the Leigh light together cut Allied shipping losses dramatically. Developments also continued in air interception, and a radar with a narrow rotating beam and plan-position-indicator (PPI) was developed and used by the RAF to direct fighters in October 1940. Early versions of airborne radar were fitted to Blenheims, but had limited minimum and maximum range. However, in the hands of skilled crews, later versions in 1941 were remarkably effective, and in the heavy night raids of 1941 radar-equipped fighters were the main weapon of air defence. In May 1941, over 100 enemy aircraft were shot down at night using radar, compared with 30 by anti-aircraft guns. Centimetric contour mapping radars like H2S greatly improved the accuracy of Allied bombers in the strategic bombing campaign. Centimetric gun-laying radars were much more accurate than the older technology. They made the big-gunned Allied battleships more deadly, and with the newly developed proximity fuse, made anti-aircraft guns more dangerous to attacking aircraft. The anti-aircraft batteries, placed along the German V-1 flying-bomb flight paths to London, are credited with destroying many of the flying bombs before they reached their target.


Tizard Mission

Bowen went to the United States with the Tizard Mission in 1940 and helped to initiate tremendous advances in microwave radar as a weapon. Bowen visited US laboratories and told them about airborne radar and arranged demonstrations. He was able to take an early example of the cavity magnetron. With remarkable speed the US military set up a special laboratory, the MIT Radiation Laboratory for the development of centimetre-wave radar, and Bowen collaborated closely with them on their programme, writing the first draft specification for their first system. The first American experimental airborne 10 cm radar was tested, with Bowen on board, in March 1941, only seven months after the Tizard Mission had arrived. The Tizard Mission was highly successful almost entirely because of the information provided by Bowen. It helped to establish the alliance between the United States and Britain over a year before the Americans entered the war. The success of collaboration in radar helped to set up channels of communication that would help in other transfers of technology to the United States such as
jet engine A jet engine is a type of reaction engine discharging a fast-moving jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition can include rocket, Pump-jet, water jet, and hybrid propulsion, the term ...
s and nuclear physics.


Australia

In the closing months of 1943, Bowen seemed to be at "loose ends" because his work in the US was virtually finished and the invasion of Europe by the Allies was imminent. Bowen was invited to come to Australia to join the
CSIRO The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is an Australian Government The Australian Government, also known as the Commonwealth Government, is the national government of Australia, a federal parliamentar ...
Radiophysics Laboratory, and in May 1946, he was appointed Chief of the Division of Radiophysics. Bowen addressed many audiences on the development of radar, its military uses and its potential peacetime applications to civil aviation, marine navigation and surveying. In addition to developments in radar, Bowen also undertook two other research activities: the pulse method of acceleration of elementary particles; and air navigation that resulted in the Distance Measuring Equipment (DME) that was ultimately adopted by many civil aircraft. He also encouraged the new science of
radioastronomy Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming f ...
and brought about the construction of the 210 ft radio telescope at Parkes, New South Wales. During visits to the US, he met two of his influential contacts during the war, Dr. Vannevar Bush who had become the President of the Carnegie Corporation and Dr. Alfred Loomis who was also a Trustee of the Carnegie Corporation and of the
Rockefeller Foundation The Rockefeller Foundation is an American private foundation and philanthropic medical research and arts funding organization based at 420 Fifth Avenue, New York City. The second-oldest major philanthropic institution in America, after the Carneg ...
. He persuaded them in 1954 to fund a large radio telescope in Australia with a grant of $250,000. Bowen in return helped to establish American radio astronomy by seconding Australians to the California Institute of Technology. Bowen played a key role in the design of the radio telescope at Parkes. At its inauguration in October 1961, he remarked, "...the search for truth is one of the noblest aims of mankind and there is nothing which adds to the glory of the human race or lends it such dignity as the urge to bring the vast complexity of the Universe within the range of human understanding." The Parkes Telescope proved timely for the US space program and tracked many space probes, including the
Apollo missions The Apollo program was a United States human spaceflight program carried out from 1961 to 1972 by the National Aeronautics and Space Administration (NASA), which landed the first astronauts on the Moon. The program used the Saturn IB and Saturn ...
. Later, Bowen played an important role in guiding the optical
Anglo-Australian Telescope The Anglo-Australian Telescope (AAT) is a 3.9-metre equatorially mounted telescope operated by the Australian Astronomical Observatory and situated at the Siding Spring Observatory, Australia, at an altitude of a little over 1,100 m. In 20 ...
project during its design phase. This was opened in 1974. Bowen also instigated rain-making experiments in Australia in 1947, and continued after he retired in 1971. He was also interested in the phenomenon of Climatic Singularities, suggesting that they might be related to the Earth's passage through belts of meteor dust – whose particles then acted as ice-nuclei for seeding clouds.


Honours

Bowen was made an
Officer of the Order of the British Empire The Most Excellent Order of the British Empire is a British order of chivalry, rewarding contributions to the arts and sciences, work with charitable and welfare organisations, and public service outside the civil service. It was established o ...
in 1941, then promoted to
Commander Commander (commonly abbreviated as Cmdr.) is a common naval officer rank. Commander is also used as a rank or title in other formal organizations, including several police forces. In several countries this naval rank is termed frigate captain. ...
in
1962 Events January * January 1 – Western Samoa becomes independent from New Zealand. * January 3 – Pope John XXIII excommunicates Fidel Castro for preaching communism. * January 8 – Harmelen train disaster: 93 die in the wors ...
. He was also awarded the American Medal of Freedom in 1947. He became a fellow of the Australian Academy of Science in 1957 and of the Royal Society in 1975.


Personal life

At Swansea University Bowen had met his future wife, Enid Vesta Williams, who was from nearby
Neath Neath (; cy, Castell-nedd) is a market town and Community (Wales), community situated in the Neath Port Talbot, Neath Port Talbot County Borough, Wales. The town had a population of 50,658 in 2011. The community of the parish of Neath had a po ...
. They married in 1938, and had three sons: Edward, David and John. Bowen had an enduring love of
cricket Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by striki ...
, and played regularly. He also became a keen sailor. In December 1987, he suffered a stroke and gradually deteriorated. He died on 12 August 1991 at the age of 80.


References


External links


Papers of Edward George Bowen
held at Churchill Archives Centre {{DEFAULTSORT:Bowen, Edward George 1911 births 1991 deaths People from Swansea Welsh physicists Welsh inventors Radar pioneers Fellows of the Royal Society Fellows of the Australian Academy of Science Commanders of the Order of the British Empire Recipients of the Medal of Freedom Alumni of King's College London