TRNA Nucleotidyltransferase
   HOME

TheInfoList



OR:

In
enzymology Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
, a tRNA nucleotidyltransferase () is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
that
catalyzes Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
the
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
:tRNAn+1 + phosphate \rightleftharpoons tRNAn + a nucleoside diphosphate where tRNA-N is a product of transcription, and tRNA Nucleotidyltransferase catalyzes this cytidine-cytidine-adenosine (CCA) addition to form the tRNA-NCCA product.


Function

Protein synthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside Cell (biology), cells, homeostasis, balancing the loss of cellular proteins (via Proteolysis, degradation or Protein targeting, export) through the product ...
takes place in cytosolic
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
s,
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
(mitoribosomes), and in plants, the
plastid The plastid (Greek: πλαστός; plastós: formed, molded – plural plastids) is a membrane-bound organelle found in the Cell (biology), cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosy ...
s (chloroplast ribosomes). Each of these compartments requires a complete set of functional tRNAs to carry out protein synthesis. The production of mature tRNAs requires processing and modification steps such as the addition of a 3’-terminal cytidine-cytidine-adenosine (CCA). Since no plant tRNA genes encode this particular sequence, a tRNA nucleotidyltransferase must add this sequence post-transcriptionally and therefore is present in all three compartments. In
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s, multiple forms of tRNA nucleotidyltransferases are synthesized from a single gene and are distributed to different subcellular compartments in the cell. There are multiple in-frame start codons which allow for the production of variant forms of the enzyme containing different targeting information predominantly found in the
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
sequence of the protein (reference). In vivo experiments show that the N-terminal sequences are used as transit peptides for import into the mitochondria and plastids. Comparison studies using available tRNA nucleotidyltransferase sequences have identified a single gene coding for this enzyme in plants. Complementation studies in yeast using cDNA derived from ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' or ''
Lupinus albus ''Lupinus albus'', commonly known as the white lupin or field lupine, is a member of the genus ''Lupinus'' in the family Fabaceae. It is a traditional pulse cultivated in the Mediterranean region. Description The white lupin is annual, more ...
'' genes demonstrate the biological activity of these enzymes. The enzyme has also been shown to repair damaged or incomplete CCA sequences in yeast. This enzyme belongs to the family of
transferase A transferase is any one of a class of enzymes that catalyse the transfer of specific functional groups (e.g. a methyl or glycosyl group) from one molecule (called the donor) to another (called the acceptor). They are involved in hundreds of di ...
s, specifically those transferring phosphorus-containing
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules wi ...
groups (
nucleotidyltransferase Nucleotidyltransferases are transferase enzymes of phosphorus-containing groups, e.g., substituents of nucleotidylic acids or simply nucleoside monophosphates. The general reaction of transferring a nucleoside monophosphate moiety from A to B, can ...
s).


References


Further reading

* * EC 2.7.7 Enzymes of known structure {{2.7-enzyme-stub