HOME

TheInfoList



OR:

The supercontinent cycle is the quasi-periodic aggregation and dispersal of
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
's
continental crust Continental crust is the layer of igneous, sedimentary, and metamorphic rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called '' sial'' be ...
. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete
supercontinent In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leav ...
cycle is said to take 300 to 500 million years.
Continental collision In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produ ...
makes fewer and larger continents while
rift In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-grabe ...
ing makes more and smaller continents.


Description

The most recent
supercontinent In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leav ...
,
Pangaea Pangaea or Pangea () was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million y ...
, formed about 300 million years ago (0.3 Ga). There are two different views on the history of earlier supercontinents. The first proposes a series of supercontinents: Vaalbara ( 3.6 to c. 2.8 billion years ago); Ur ( 3 billion years ago);
Kenorland Kenorland was one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago (2.72 Ga) by the accretion of Neoarchaean cratons and the formation of new continental crust. ...
( 2.7 to 2.1 billion years ago);
Columbia Columbia may refer to: * Columbia (personification), the historical female national personification of the United States, and a poetic name for America Places North America Natural features * Columbia Plateau, a geologic and geographic region i ...
( 1.8 to 1.5 billion years ago);
Rodinia Rodinia (from the Russian родина, ''rodina'', meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago. were prob ...
( 1.25 billion to 750 million years ago); and
Pannotia Pannotia (from Greek: '' pan-'', "all", '' -nótos'', "south"; meaning "all southern land"), also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontine ...
( 600 million years ago), whose dispersal produced the fragments that ultimately collided to form Pangaea. The second view (Protopangea-Paleopangea), based on both
palaeomagnetic Paleomagnetism (or palaeomagnetismsee ), is the study of magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called ''paleomagnetists.'' Certain magnetic minerals in rocks ...
and geological evidence, is that supercontinent cycles did not occur before about 0.6  Ga (during the
Ediacaran The Ediacaran Period ( ) is a geological period that spans 96 million years from the end of the Cryogenian Period 635 million years ago (Mya), to the beginning of the Cambrian Period 538.8 Mya. It marks the end of the Proterozoic Eon, and t ...
Period). Instead, the continental crust comprised a single supercontinent from about 2.7 Ga (gigaannums, or billion years ago) until it broke up for the first time, somewhere around 0.6 Ga. This reconstruction is based on the observation that if only small peripheral modifications are made to the primary reconstruction, the data show that the palaeomagnetic poles converged to quasi-static positions for long intervals between about 2.7–2.2, 1.5–1.25 and 0.75–0.6 Ga. During the intervening periods, the poles appear to have conformed to a unified apparent polar wander path. Thus the paleomagnetic data are adequately explained by the existence of a single Protopangea–Paleopangea supercontinent with prolonged quasi-integrity. The prolonged duration of this supercontinent could be explained by the operation of lid tectonics (comparable to the tectonics operating on Mars and Venus) during
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
times, as opposed to the
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
seen on the contemporary Earth. However, this approach was widely criticized as it is based on incorrect application of paleomagnetic data. The kinds of minerals found inside ancient
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, b ...
s suggest that the cycle of supercontinental formation and breakup began roughly 3.0 billion years ago (3.0 Ga). Before 3.2 billion years ago only diamonds with
peridot Peridot ( /ˈpɛr.ɪˌdɒt, -ˌdoʊ/ ''PERR-ih-dot, -⁠doh''), sometimes called chrysolite, is a deep yellowish-green transparent variety of olivine. Peridot is one of the few gemstones that only occurs in one color. Peridot can be found in ...
itic compositions (commonly found in the Earth's mantle) formed, whereas after 3.0 billion years ago eclogitic diamonds (rocks from the Earth's surface crust) became prevalent. This change is thought to have come about as subduction and continental collision introduced eclogite into subcontinental diamond-forming fluids. The hypothesized supercontinent cycle is overlaid by the Wilson Cycle named after
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
pioneer
John Tuzo Wilson John Tuzo Wilson (October 24, 1908 – April 15, 1993) was a Canadian geophysicist and geologist who achieved worldwide acclaim for his contributions to the theory of plate tectonics. ''Plate tectonics'' is the scientific theory that the rigi ...
, which describes the periodic opening and closing of
oceanic basin In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, ocean basins are large  geologic basins that are below sea level. Most commonly the ocean is divided into basins fol ...
s from a single plate rift. The oldest seafloor material found today dates to only 170 million years old, whereas the oldest continental crust material found today dates to 4 billion years, showing the relative brevity of the regional Wilson cycles compared to the planetary pulse seen in the arrangement of the continents.


Effects on sea level

It is known that
sea level Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardis ...
is generally low when the continents are together and high when they are apart. For example, sea level was low at the time of formation of Pangaea (
Permian The Permian ( ) is a geologic period and stratigraphic system which spans 47 million years from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.9 Mya. It is the last period of the Paleo ...
) and Pannotia (latest
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is prec ...
), and rose rapidly to maxima during
Ordovician The Ordovician ( ) is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period million years ago (Mya) to the start of the Silurian Period Mya. T ...
and
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of ...
times, when the continents were dispersed. This is because the age of the
oceanic lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years or ...
provides a major control on the depth of the ocean basins, and therefore on global sea level. Oceanic lithosphere forms at
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a div ...
s and moves outwards, conductively cooling and shrinking, which decreases the thickness and increases the density of the oceanic lithosphere, and lowers the seafloor away from mid-ocean ridges. For oceanic lithosphere that is less than about 75 million years old, a simple cooling half-space model of conductive cooling works, in which the depth of the ocean basins ''d'' in areas in which there is no nearby
subduction Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, ...
is a function of the age of the oceanic lithosphere ''t''. In general, :d(t) = \frac a_ T_1 \sqrt + d_ where ''κ'' is the
thermal diffusivity In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It measures the rate of transfer of heat of a material from the hot end to the cold end. It has the SI ...
of the mantle lithosphere ( ), ''a''eff is the effective
thermal expansion coefficient Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
for rock ( ), ''T''1 is the temperature of ascending magma compared to the temperature at the upper boundary ( 1220 °C for the Atlantic and Indian Oceans, 1120 °C for the eastern Pacific) and ''d''r is the depth of the ridge below the ocean surface. After plugging in rough numbers for the sea floor, the equation becomes: :for the eastern Pacific Ocean: ::d(t) = 350 \sqrt + 2500 :: ::and for the Atlantic and Indian Oceans: ::d(t) = 390 \sqrt + 2500 where ''d'' is in meters and ''t'' is in millions of years, so that just-formed crust at the mid-ocean ridges lies at about 2,500 m depth, whereas 50-million-year-old seafloor lies at a depth of about 5,000 m. As the mean level of the sea floor decreases, the volume of the ocean basins increases, and if other factors that can control sea level remain constant, sea level falls. The converse is also true: younger oceanic lithosphere leads to shallower oceans and higher sea levels if other factors remain constant. The surface area of the oceans can change when continents
rift In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-grabe ...
(stretching the continents decreases ocean area and raises sea level) or as a result of
continental collision In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produ ...
(compressing the continents increases ocean area and lowers sea level). Increasing sea level will flood the continents, while decreasing sea level will expose continental shelves. Because the
continental shelf A continental shelf is a portion of a continent that is submerged under an area of relatively shallow water, known as a shelf sea. Much of these shelves were exposed by drops in sea level during glacial periods. The shelf surrounding an island ...
has a very low slope, a small increase in sea level will result in a large change in the percent of continents flooded. If the world ocean on average is young, the seafloor will be relatively shallow, and sea level will be high: more of the continents are flooded. If the world ocean is on average old, seafloor will be relatively deep, and sea level will be low: more of the continents will be exposed. There is thus a relatively simple relationship between the supercontinent cycle and the mean age of the seafloor. *Supercontinent = much old seafloor = low sea level *Dispersed continents = much young seafloor = high sea level There will also be a climatic effect of the supercontinent cycle that will amplify this further: *Supercontinent = continental climate dominant = continental glaciation likely = still lower sea level *Dispersed continents = maritime climate dominant = continental glaciation unlikely = sea level is not lowered by this mechanism


Relation to global tectonics

There is a progression of tectonic regimes that accompanies the supercontinent cycle: During break-up of the supercontinent, rifting environments dominate. This is followed by passive margin environments, while seafloor spreading continues and the oceans grow. This in turn is followed by the development of collisional environments that become increasingly important with time. First collisions are between continents and island arcs, but lead ultimately to continent-continent collisions. This was the situation during the Paleozoic supercontinent cycle; it is being observed for the
Mesozoic The Mesozoic Era ( ), also called the Age of Reptiles, the Age of Conifers, and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretace ...
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
supercontinent cycle, still in progress.


Relation to climate

There are two types of global earth climates: icehouse and greenhouse. Icehouse is characterized by frequent continental glaciations and severe desert environments. Greenhouse is characterized by warm climates. Both reflect the supercontinent cycle. It is now a short greenhouse phase of an icehouse world. *Icehouse climate **Continents moving together **Sea level low due to lack of seafloor production **Climate cooler, arid **Associated with
aragonite sea An aragonite sea contains aragonite and high-magnesium calcite as the primary inorganic calcium carbonate precipitates. The chemical conditions of the seawater must be notably high in magnesium content relative to calcium (high Mg/Ca ratio) for ...
s **Formation of
supercontinent In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leav ...
s *Greenhouse climate **Continents dispersed **Sea level high **High level of
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener a ...
**Relatively large amounts of CO2 production at oceanic rifting zones **Climate warm and humid **Associated with
calcite sea A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic ca ...
s Periods of icehouse climate: much of
Neoproterozoic The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is prec ...
, late
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ...
, late
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
. Periods of greenhouse climate: Early
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ...
,
Mesozoic The Mesozoic Era ( ), also called the Age of Reptiles, the Age of Conifers, and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretace ...
–early
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
.


Relation to evolution

The principal mechanism for evolution is natural selection among diverse populations. As
genetic drift Genetic drift, also known as allelic drift or the Wright effect, is the change in the frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene variants to disappear completely and there ...
occurs more frequently in small populations, diversity is an observed consequence of isolation. Less isolation, and thus less diversification, occurs when the continents are all together, producing both one continent and one ocean with one coast. In Latest Neoproterozoic to Early Paleozoic times, when the tremendous proliferation of diverse
metazoa Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
occurred, isolation of marine environments resulted from the breakup of Pannotia. A north–south arrangement of continents and oceans leads to much more diversity and isolation than east–west arrangements. North-to-south arrangements give climatically different zones along the communication routes to the north and south, which are separated by water or land from other continental or oceanic zones of similar climate. Formation of similar tracts of continents and ocean basins oriented east–west would lead to much less isolation, diversification, and slower evolution, since each continent or ocean is in fewer climatic zones. Through the
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
, isolation has been maximized by a north–south arrangement. Diversity, as measured by the number of families, follows the supercontinent cycle very well.


Further reading

* * *


See also

*
Pangaea Pangaea or Pangea () was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million y ...
*
Plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
*
History of Earth The history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geologi ...


References


External links


Reconstructions from "Paleomap Project"
{{Continents of Earth Plate tectonics Supercontinents Geologic modelling