Spaghettification
   HOME

TheInfoList



OR:

In
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
, spaghettification (sometimes referred to as the noodle effect) is the vertical stretching and horizontal compression of objects into long thin shapes (rather like
spaghetti Spaghetti () is a long, thin, solid, cylindrical pasta.spaghetti
Dictionary.com. Dictionary.com Unabridg ...
) in a very strong, non-
homogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenome ...
. It is caused by extreme
tidal force The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomen ...
s. In the most extreme cases, near a
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, the stretching and compression are so powerful that no object can resist it. Within a small region, the horizontal compression balances the vertical stretching so that a small object being spaghettified experiences no net change in volume. Stephen Hawking described the flight of a fictional
astronaut An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a human spaceflight program to serve as a commander or crew member aboard a spacecraft. Although generally r ...
who, passing within a black hole's
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact obj ...
, is "stretched like spaghetti" by the
gravitational gradient Gravity gradiometry is the study and measurement of variations ( anomalies) in the Earth's gravity field. The gravity gradient tensor is the spatial rate of change of gravitational acceleration; as acceleration is a vector quantity, with magnitu ...
(difference in gravitational force) from head to toe. The reason this happens would be that the
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
force exerted by the singularity would be much stronger at one end of the body than the other. If one were to fall into a black hole feet first, the gravity at their feet would be much stronger than at their head, causing the person to be vertically stretched. Along with that, the right side of the body will be pulled to the left, and the left side of the body will be pulled to the right, horizontally compressing the person. However, the term "spaghettification" was established well before this. Spaghettification of a star was imaged for the first time in 2018 by researchers observing a pair of colliding galaxies approximately 150 million
light-years A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
from Earth.


A simple example

In this example, four separate objects are in the space above a planet, positioned in a diamond formation. The four objects follow the lines of the gravitoelectric field, directed towards the celestial body's centre. In accordance with the
inverse-square law In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understo ...
, the lowest of the four objects experiences the biggest gravitational acceleration, so that the whole formation becomes stretched into a line. These four objects are connected parts of a larger object. A rigid body will resist distortion, and internal elastic forces develop as the body distorts to balance the tidal forces, so attaining
mechanical equilibrium In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero ...
. If the tidal forces are too large, the body may yield and flow plastically before the tidal forces can be balanced, or fracture, producing either a filament or a vertical line of broken pieces.


Examples of weak and strong tidal forces

In the gravity field due to a point mass or spherical mass, for a uniform rod oriented in the direction of gravity, the
tensile force In physics, tension is described as the pulling force transmitted axially by the means of a string, a rope, chain, or similar object, or by each end of a rod, truss member, or similar three-dimensional object; tension might also be described as t ...
at the center is found by integration of the tidal force from the center to one of the ends. This gives , where is the
standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM when ...
of the massive body, is the length of the rod, is rod's mass, and is the distance to the massive body. For non-uniform objects the tensile force is smaller if more mass is near the center, and up to twice as large if more mass is at the ends. In addition, there is a horizontal compression force toward the center. For massive bodies with a surface, the tensile force is largest near the surface, and this maximum value is only dependent on the object and the average density of the massive body (as long as the object is small relative to the massive body). For example, for a rod with a mass of 1 kg and a length of 1 m, and a massive body with the average density of the Earth, this maximum tensile force due to the tidal force is only 0.4 μN. Due to the high density, the tidal force near the surface of a
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fro ...
is much stronger, causing in the example a maximum tensile force of up to 0.24 N. Near a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
, the tidal forces are again much stronger: if the rod has a tensile strength of 10,000 N and falls vertically to a neutron star of 2.1 solar masses, setting aside that it would melt, it would break at a distance of 190 km from the center, well above the surface (a neutron star typically has a radius of only about 12 km).An 8-meter rod of the same strength, with a mass of 8 kg, breaks at a distance 4 times as high. In the previous case, objects would actually be destroyed and people killed by the heat, not the tidal forces - but near a black hole (assuming that there is no nearby matter), objects would actually be destroyed and people killed by the tidal forces because there is no radiation. Moreover, a black hole has no surface to stop a fall. Thus, the infalling object is stretched into a thin strip of matter.


Inside or outside the event horizon

The point at which tidal forces destroy an object or kill a person will depend on the black hole's size. For a
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical obj ...
, such as those found at a galaxy's center, this point lies within the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact obj ...
, so an astronaut may cross the event horizon without noticing any squashing and pulling, although it remains only a matter of time, as once inside an event horizon, falling towards the center is inevitable. For small black holes whose
Schwarzschild radius The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic ...
is much closer to the singularity, the tidal forces would kill even before the astronaut reaches the event horizon. For example, for a black hole of 10 Sun massesThe smallest black hole that can be formed by natural processes at the current stage of the universe has over twice the mass of the Sun. the above-mentioned rod breaks at a distance of 320 km, well outside the Schwarzschild radius of 30 km. For a supermassive black hole of 10,000 Sun masses, it will break at a distance of 3,200 km, well inside the Schwarzschild radius of 30,000 km.


Notes


References

;Inline citations ;General references *


External links


Neil DeGrasse Tyson: Death by Black Hole (clear explanation of the term)
{{Black holes Black holes Effects of gravitation Metaphors referring to spaghetti Tidal forces