HOME

TheInfoList



OR:

The Sortino ratio measures the risk-adjusted return of an investment
asset In financial accounting, an asset is any resource owned or controlled by a business or an economic entity. It is anything (tangible or intangible) that can be used to produce positive economic value. Assets represent value of ownership that can ...
,
portfolio Portfolio may refer to: Objects * Portfolio (briefcase), a type of briefcase Collections * Portfolio (finance), a collection of assets held by an institution or a private individual * Artist's portfolio, a sample of an artist's work or a c ...
, or strategy. It is a modification of the
Sharpe ratio In finance, the Sharpe ratio (also known as the Sharpe index, the Sharpe measure, and the reward-to-variability ratio) measures the performance of an investment such as a security or portfolio compared to a risk-free asset, after adjusting for its ...
but penalizes only those returns falling below a user-specified target or required
rate of return In finance, return is a profit on an investment. It comprises any change in value of the investment, and/or cash flows (or securities, or other investments) which the investor receives from that investment, such as interest payments, coupons, cas ...
, while the Sharpe ratio penalizes both upside and downside volatility equally. Though both ratios measure an investment's risk-adjusted return, they do so in significantly different ways that will frequently lead to differing conclusions as to the true nature of the investment's return-generating efficiency. The Sortino ratio is used as a way to compare the risk-adjusted performance of programs with differing risk and return profiles. In general, risk-adjusted returns seek to normalize the risk across programs and then see which has the higher return unit per risk.


Definition

The ratio S is calculated as : S = \frac , where R is the asset or portfolio average realized return, T is the target or required rate of return for the investment strategy under consideration (originally called the minimum acceptable return ''MAR''), and DR is the target semi-deviation (the square root of target semi-variance), termed downside deviation. DR is expressed in percentages and therefore allows for rankings in the same way as standard deviation. An intuitive way to view downside risk is the annualized standard deviation of returns below the target. Another is the square root of the probability-weighted squared below-target returns. The squaring of the below-target returns has the effect of penalizing failures at a quadratic rate. This is consistent with observations made on the behavior of individual decision making under uncertainty. : DR = \sqrt Here DR = downside deviation or (commonly known in the financial community) "downside risk" (by extension, DR^2 = downside variance), T = the annual target return, originally termed the minimum acceptable return ''MAR'', r = the random variable representing the return for the distribution of annual returns f(r), and f(r) = the distribution for the annual returns, e.g., the
log-normal distribution In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a norma ...
. For the reasons provided below, this ''continuous'' formula is preferred over a simpler ''discrete'' version that determines the standard deviation of below-target periodic returns taken from the return series. # The continuous form permits all subsequent calculations to be made using annual returns, the natural way for investors to specify their investment goals. The discrete form requires monthly returns for there to be sufficient data points to make a meaningful calculation, which in turn requires converting the annual target into a monthly target. This significantly affects the amount of risk that is identified. For example, a goal of earning 1% in every month of one year results in a greater risk than the seemingly equivalent goal of earning 12% in one year. # A second reason for strongly preferring the continuous form to the discrete form has been proposed by Sortino & Forsey (1996):
"Before we make an investment, we don't know what the outcome will be... After the investment is made, and we want to measure its performance, all we know is what the outcome was, not what it could have been. To cope with this uncertainty, we assume that a reasonable estimate of the range of possible returns, as well as the probabilities associated with estimation of those returns...In statistical terms, the shape of
his His or HIS may refer to: Computing * Hightech Information System, a Hong Kong graphics card company * Honeywell Information Systems * Hybrid intelligent system * Microsoft Host Integration Server Education * Hangzhou International School, in ...
uncertainty is called a probability distribution. In other words, looking at just the discrete monthly or annual values does not tell the whole story."
Using the observed points to create a distribution is a staple of conventional performance measurement. For example, monthly returns are used to calculate a fund's mean and standard deviation. Using these values and the properties of the normal distribution, we can make statements such as the likelihood of losing money (even though no negative returns may actually have been observed) or the range within which two-thirds of all returns lies (even though the specific returns identifying this range have not necessarily occurred). Our ability to make these statements comes from the process of assuming the continuous form of the normal distribution and certain of its well-known properties. In
post-modern portfolio theory Post-Modern Portfolio Theory (PMPT) is an extension of the traditional Modern Portfolio Theory (MPT), an application of mean-variance analysis (MVA). Both theories propose how rational investors can use diversification to optimize their portfolios. ...
an analogous process is followed. #Observe the monthly returns. #Fit a distribution that permits asymmetry to the observations. #Annualize the monthly returns, making sure the shape characteristics of the distribution are retained. #Apply integral calculus to the resultant distribution to calculate the appropriate statistics. As a caveat, some practitioners have fallen into the habit of using discrete periodic returns to compute downside risk. This method is conceptually and operationally incorrect and negates the foundational statistic of post-modern portfolio theory as developed by Brian M. Rom and Frank A. Sortino.


Usage

The Sortino ratio is used to score a portfolio's risk-adjusted returns relative to an investment target using downside risk. This is analogous to the Sharpe ratio, which scores risk-adjusted returns relative to the risk-free rate using standard deviation. When return distributions are near symmetrical and the target return is close to the distribution median, these two measure will produce similar results. As skewness increases and targets vary from the median, results can be expected to show dramatic differences. Practitioners who use a lower partial Standard Deviation (LPSD) instead of a standard deviation also tend to use the Sortino ratio instead of the Sharpe ratio. Investments (Bodie et al) 11th edition


See also

*
Modern portfolio theory Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversificati ...
* Modigliani risk-adjusted performance * Omega ratio *
Post-modern portfolio theory Post-Modern Portfolio Theory (PMPT) is an extension of the traditional Modern Portfolio Theory (MPT), an application of mean-variance analysis (MVA). Both theories propose how rational investors can use diversification to optimize their portfolios. ...
*
Sharpe ratio In finance, the Sharpe ratio (also known as the Sharpe index, the Sharpe measure, and the reward-to-variability ratio) measures the performance of an investment such as a security or portfolio compared to a risk-free asset, after adjusting for its ...
* Upside potential ratio * V2 ratio


References

{{Financial ratios Financial ratios Statistical ratios Portfolio theories Yield (finance)