HOME

TheInfoList



OR:

Soil compaction, also known as
soil structure Soil structure describes the arrangement or the way of soil in the solid parts of the soil and of the pore space located between them. It is determined by how individual soil granules clump, bind together, and aggregate, resulting in the arrangem ...
degradation, is the increase of bulk density or decrease in porosity of soil due to externally or internally applied loads. Compaction can adversely affect nearly all physical, chemical and biological properties and functions of soil. Together with
soil erosion Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, an ...
, it is regarded as the "costliest and most serious environmental problem caused by conventional agriculture." In agriculture, soil compaction is a complex problem in which soil, crops, weather and
machinery A machine is a physical system using power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecule ...
interact. External pressure due to the use of heavy machinery and inappropriate soil management can lead to the compaction of
subsoil Subsoil is the layer of soil under the topsoil on the surface of the ground. Like topsoil, it is composed of a variable mixture of small particles such as sand, silt and clay, but with a much lower percentage of organic matter and humus, and it ...
, creating impermeable layers within the soil that restrict
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
and nutrient cycles. This process can cause on-site effects such as reduced crop growth, yield and quality as well as off-site effects such as increased
surface water Surface water is water located on top of land forming terrestrial (inland) waterbodies, and may also be referred to as ''blue water'', opposed to the seawater and waterbodies like the ocean. The vast majority of surface water is produced by pr ...
run-off, soil erosion,
greenhouse gas emissions Greenhouse gas emissions from human activities strengthen the greenhouse effect, contributing to climate change. Most is carbon dioxide from burning fossil fuels: coal, oil, and natural gas. The largest emitters include coal in China and lar ...
,
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytoplan ...
, reduced
groundwater recharge Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs ...
and a
loss of biodiversity Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, d ...
. Unlike salinization or erosion, soil compaction is principally a sub-surface problem and therefore an invisible phenomenon. Special identification methods are necessary to locate, monitor and manage the problem appropriately.


History and current state

Soil compaction is not a recent issue. Before the beginning of mechanized agriculture, the usage of plough-pans was associated with soil compaction. However, multiple studies have shown that modern farming techniques increase the risk of harmful soil compaction. The historic data basis for global soil compaction is generally very weak as there are only measurements or estimates for certain regions/countries at certain points in time. In 1991, it was estimated that soil compaction accounted for 4% (68.3 million hectares) of anthropogenic
soil degradation Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession reverts the land to ...
worldwide. In 2013, soil compaction was regarded a major reason for soil degradation in Europe (appr. 33 million ha affected), Africa (18 million ha), Asia (10 million ha), Australia (4 million ha), and some areas of North America. More specifically, in Europe approximately 32% and 18% of the subsoils are highly and moderately vulnerable to compaction respectively.


Mechanism

In healthy, well-structured soils, particles interact with each other forming soil aggregates. The resulting soil structure increases in stability with the number of interactions between soil particles. Water and air fills the voids between soil particles, where water interacts with soil particles forming a thin layer around them. This layer can shield particle-particle interaction thus reducing the stability of soil structure.Hartge, Karl Heinrich and Horn, Rainer (1991). Einführung in die Bodenphysik, Enke Verlag. 2. Auflage, p. 25-115 Mechanic pressure applied to the soil is counterbalanced by an increase of soil particle interactions. This implies a reduction in soil volume by reducing the voids in between soil particles. As a consequence water and air is displaced and soil bulk density increases, resulting in a reduced permeability for water and air.Jones, Robert JA and Spoor, G and Thomasson, AJ (2003). Vulnerability of subsoils in Europe to compaction: a preliminary analysis, Soil and Tillage Research. Vol. 73, 1, 131–143. Susceptibility of soil to compaction depends on several factors, which influence soil particle interactions: *
Soil texture Soil texture is a classification instrument used both in the field and laboratory to determine soil classes based on their physical texture. Soil texture can be determined using qualitative methods such as texture by feel, and quantitative methods ...
, with fine textured soils (high clay content) being more susceptible to compaction than coarse textured soils. * Soil structure, with angular, heterogeneous structures being more stable. * Soil water content, a high water content increases susceptibility to compaction as the layer of water on the surface of soil particles shields interactions between soil particles * Initial bulk density, dense soils are more resistant to compaction as the number of particle interactions is higher. * Organic matter content, increases resistance to compaction as organic matter acts as a buffer, binding minerals and water * pH, affects net charges of molecules


Causes

Soil compaction can occur naturally by the drying and wetting process called soil consolidation, or when external pressure is applied to the soil. The most relevant human-induced causes of soil compaction in agriculture are the use of heavy machineries, tillage practice itself, inappropriate choice of tillage systems, as well as
livestock Livestock are the domesticated animals raised in an agricultural setting to provide labor and produce diversified products for consumption such as meat, eggs, milk, fur, leather, and wool. The term is sometimes used to refer solely to animals ...
trampling. Use of large and heavy machineries for agriculture often causes not only
topsoil Topsoil is the upper layer of soil. It has the highest concentration of organic matter and microorganisms and is where most of the Earth's biological soil activity occurs. Description Topsoil is composed of mineral particles and organic matte ...
but subsoil compaction. Subsoil compaction is more difficult to be regenerated than topsoil compaction. Not only may the weight of machineries i.e. axle load, but also velocity and number of passages affect the intensity of soil compaction. Inflation pressure of wheels and tyres also plays an important role for the degree of soil compaction.Batey, T. (2009). Soil compaction and soil management - a review, Soil Use and Management 25 : 335 - 345. Whether heavy machinery is in use or not, tillage practice itself can cause soil compaction. While the major cause of soil compaction in a tillage activity nowadays is due to machineries, the influence of compaction resulting from lighter equipments and animals to the topsoil should not be neglected. Moreover, inappropriate choices of tillage systems may cause unnecessary soil compaction. It should however be noted that tillage activity could reduce topsoil compaction compared to no tillage activity in the long term. Significant livestock trampling resulting from livestock farming on meadows and agricultural land is also viewed major cause of soil compaction. This is not affected whether the grazing is continuous or short term, however it is affected by the intensity of grazing.


Effects


On-site effects

Major effects on soil properties due to soil compaction are reduced air permeability and reduced
water infiltration Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meter ...
. Main physical negative effects to plants are restricted
plant root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
growth in response to the accumulation of the plant hormone
ethylene Ethylene ( IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene ...
and accessibility of
nutrient A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
s due to increase in bulk density and reduced soil pore size. This may lead to an extremely dry topsoil and eventually causes soil to crack because the roots absorb water requiring for transpiration from the upper part of the soil where plants can penetrate with their restricted root depth. Soil chemical properties are influenced by change in soil physical properties. One possible effect is a decrease in oxygen diffusion that causes
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
condition. Together with anaerobic condition, increases in soil water saturation can increase
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
processes in the soil. Possible consequences are an increase in N2O emission, decreases in available nitrogen in soil and reduced efficiency of nitrogen usage by crops. This may cause in an increase of fertilizer use.
Soil biodiversity Soil biodiversity refers to the relationship of soil to biodiversity and to aspects of the soil that can be managed in relative to biodiversity. Soil biodiversity relates to some catchment management considerations. Biodiversity According to the ...
is also influenced by reduced soil aeration. Severe soil compaction may cause reduced
microbial A microorganism, or microbe,, ''mikros'', "small") and '' organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
biomass Biomass is plant-based material used as a fuel for heat or electricity production. It can be in the form of wood, wood residues, energy crops, agricultural residues, and waste from industry, farms, and households. Some people use the terms bi ...
. Soil compaction may not influence the quantity, but the distribution of macro fauna that is vital for soil structure including
earthworms An earthworm is a terrestrial invertebrate that belongs to the phylum Annelida. They exhibit a tube-within-a-tube body plan; they are externally segmented with corresponding internal segmentation; and they usually have setae on all segments. ...
due to reduction in large pores. All these factors affect plant growth negatively, and thus lead to reduced crop yields in most cases. As soil compaction is persistent, loss of crop yield as one of the "soil compaction costs" may lead to a concern of long term economic loss.


Off-site effects

Soil compaction and its direct effects are closely interrelated with indirect off-site effects that have a global impact, visible only in the long-term perspective. Accumulating effects may result in complex
environmental impact Environmental issues are effects of human activity on the biophysical environment, most often of which are harmful effects that cause environmental degradation. Environmental protection is the practice of protecting the natural environment on t ...
s contributing to ongoing global environmental issues such as erosion,
flooding A flood is an overflow of water ( or rarely other fluids) that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrolog ...
,
climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
and
loss of biodiversity Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, d ...
in soil. Food security Soil compaction causes reductions in crop growth, yield and quality. Locally, these effects may have minor impacts on
food security Food security speaks to the availability of food in a country (or geography) and the ability of individuals within that country (geography) to access, afford, and source adequate foodstuffs. According to the United Nations' Committee on World F ...
. If one aggregates the losses in food supply due to soil compaction, however, compaction may threaten food security. This is especially relevant for regions that are prone to
drought A drought is defined as drier than normal conditions.Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D.  Jiang, A.  Khan, W.  Pokam Mba, D.  Rosenfeld, J. Tierney, an ...
s and floodings. Here, compacted soil may contribute to dry topsoil and increased surface runoff. In addition, climate change can worsen adverse of soil compaction. This is because climate change features events such as heat waves and storms that can increase the risk of droughts and floodings and drainage systems. Climate change and Energy use Soil stores
greenhouse gases A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), meth ...
(GHG). It is seen as a major terrestrial pool of carbon. Providing
nutrient cycling A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyc ...
and filtering services, soil regulates GHG fluxes. The loss of gases from soil to the atmosphere is often enhanced by the influence of soil compaction on permeability and changes in crop growth. When compacted soils are waterlogged or have an elevated water content, they tend to cause
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on ...
(CH4) losses to the atmosphere due to an increased bacteria activity. The release of the GHG
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has ...
(N2O) originates also from microbiological processes in soil and is reinforced by the use of
nitrogen fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
on arable land. Furthermore, compacted soil requires an extra energy input. More fuel and fertilizer are used for cultivation compared to uncompacted soil due to restrictions in crop growth resulting from a decreased efficiency in nitrogen use. The production of nitrogen fertilizer is highly energy demanding. Erosion, Flooding and Surface Water The reduced permeability of compacted soil can result in local flooding. When water cannot infiltrate, ponding and water logging pose a general risk for soil erosion by water.Soane, B.D., van Ouwerkerk, C., (1995). Implications of soil compaction in crop production for the quality of the environment. Soil & Tillage Research, 35, 5-22. doi:10.1016/0167-1987(95)00475-8 On compacted soils, wheel tracks are often the starting point for runoff and erosion. Soil erosion is likely to appear on sloping fields or especially hilly land. This might lead to a transfer of sediments 6. Except for direct negative effects for farmers, the risk of surface runoff close to wheel tracks affects the off-farm environment indirectly, as it for example redistributes "sediment, nutrients and pesticides within the field and beyond". Especially when the risk of surface soil erosion is heightened, eutrophication of surface waters becomes a big problem due to an increased amount of nutrients. On high risk areas, such as wet soils on slopes, applied slurry can runoff easily. This results in a loss of ammonia, which is polluting surface waters, as it creates a lack of oxygen. Leading so to the death of many species, soil erosion caused by compaction is responsible for a decline in habitat quality and therefore species loss. Groundwater Another off-site effect can be seen with regard to groundwater. The infiltration rate of grassland soil without traffic is five times higher than on soil with severe traffic. A consequence might be a reduced recharge of groundwater. Especially in dryer regions suffering from a lack of water reserves, this poses a crucial risk. In regions where "the
subsoil Subsoil is the layer of soil under the topsoil on the surface of the ground. Like topsoil, it is composed of a variable mixture of small particles such as sand, silt and clay, but with a much lower percentage of organic matter and humus, and it ...
provides a significant proportion of the water required by crops to meet transpiration demands", often being dependent on agriculture, this danger of compaction is most present. Moreover, the amount of fertilizer that is used on compacted soils is more than plants can take up. Thus, the surplus of nitrate in soil tends to leach into groundwater resulting in
pollution Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance (solid, liquid, or gas) or energy (such as radioactivity, heat, sound, or light). Pollutants, the ...
. Due to a declining filter ability of soil, microbial
decomposition Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is ...
of
pesticides Pesticides are substances that are meant to control pests. This includes herbicide, insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, microbicide, fungicide, and la ...
is restrained and also pesticides are more likely to reach groundwater.


Identification methods

Soil compaction can be identified either in the field, the laboratory or via remote sensing. In order to get reliable data and results a combination of different methods is necessary as "there is no single universal method available to identify compact soils".Batey, T.; McKenzie, D. C. (2006). Soil compaction: identification directly in the field. In: Soil Use and Management, June 2006, 22, 123-131. doi: 10.1111/j.1475-2743.2006.00017.x In the field Phenomena like waterlogging on the surface or in subsurface layers, visible reduction in porosity and changes of soil structure, soil moisture and soil colour are indicators of soil compaction in the field. A blue-grey soil colour and a smell of hydrogen sulphide can occur in the top soil due to extenuated aeration . An increase in soil strength can be measured with a penetrometer, which is basically a device for measuring the resistance of a soil. Another important indicator of soil compaction is the vegetation itself. By means of patterns of crop growth, pale leaf colours and root growth, it is possible to draw conclusions to the extent of compaction. Especially when trying to identify soil compaction in the field with the measurements mentioned above it has been considered particularly important to make a comparison between potentially compacted soil and uncompacted soil nearby. In the laboratory Soil bulk density, pore-size distribution, water permeability and the relative apparent gas diffusion coefficient give a good overview of the permeability of soils to air and water and therefore on the degree of compaction. Since the coarse pores are most important for water infiltration, gas exchange and transport, focusing on them when measuring the porosity and the diffusion coefficient is recommended. Data gained at a laboratory are reliable as long as a certain amount of samples has been analyzed. That is why it is necessary to gather a large number of soil samples throughout the entire sample plot that is of interest. Remote sensing Remote sensing helps to recognize alterations of soil structure, root growth, water storage capacities and biological activity. "Detection of these features directly on the surface of bare soil or indirectly by the vegetation lead to identification of this type of degradation." This is especially helpful for large areas. As a prevention of soil compaction remote sensing can model the susceptibility of soils by considering soil texture, slope value, water regime and economic factors like the type of farming or the machinery being used. Limitations Soil compaction is often local and depends on many factors that may vary within a few square meters. This makes it very hard to estimate susceptibility of soils to compaction at a large scale. Since methods of remote sensing are not able to identify soil compaction directly there are limitations to identification, monitoring and quantifying, especially on a global scale. Identification methods mentioned above are insufficient for large areas since it is not possible to get a large enough sample size without harming the soil and keeping financial afford to a reasonable level.


Avoidance and mitigation

It takes several decades for a partial restoration of compacted soil and therefore it is extremely important to take active measures in order to regenerate soil functions. Since soil compaction is very hard to identify and reverse, special attention has to be paid on avoidance and alleviation.


Public policy responses

The United Nations General Assembly has agreed to jointly combat land degradation. In particular, member states committed themselves to "use and disseminate modern technology for data collection, transmission and assessment on land degradation". The European Union addresses soil compaction by means of the Seventh EU Environment Action Programme, which entered into force in 2014. It recognises that soil degradation is a serious challenge and states that by 2020 land is supposed to be managed sustainably in the entire Union. National governments have regulated agriculture practices in order to mitigate the effect of soil compaction. For instance, in Germany farmers operate under the Federal Soil Conservation Law. The law states that farmers have the obligation of precaution towards soil compaction according to acknowledged good practices. Good practices may vary from case to case, involving a variety of biological, chemical and technical methods.


Biological methods

The introduction of deep rooting plants are a natural way to regenerate compacted soils. Deep rooting crops provide crop induced wetting and drying cycles that crack the soil, break up impermeable layers of soil by root penetration and increase organic matter 0. The zaï technique describes a system planting pits that are being dug into poor soil. These pits, with an average diameter of 20–40 cm and a depth of 10–20 cm, are filled with organic matter then seeded after the first rain of the season. This technique conserves soil, captures water, and gradually rehabilitates the structure and health of the underlying soil. A systematic way to regenerate degraded soil (e.g. compacted soil) in the long run is the transformation of conventional farming to agroforestry. Agroforestry systems aims at the stabilization of the annual yield as well as the healthy maintenance of the ecosystem by combining the cultivation of crop plants and trees on the same site 1


Chemical methods

Since soil compaction can lead to a reduced crop growth and therefore to a reduced economic yield the use of fertilizer, especially nitrogen and phosphorus, is increasing. This growing demand causes several problems. Phosphor occurs in marine deposits, magmatic deposits or in
guano Guano (Spanish from qu, wanu) is the accumulated excrement of seabirds or bats. As a manure, guano is a highly effective fertilizer due to the high content of nitrogen, phosphate, and potassium, all key nutrients essential for plant growth. ...
. Phosphor extracted from marine deposits contains cadmium and uran. Both elements can have toxic effects on soil, plants and hence for humans or animals as consumer. Another opportunity to increase
soil fertility Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality.
besides from using mineral fertilizer is liming. Through liming the pH level and base saturation should be raised to a level more suitable for microorganisms and especially earth worms in the topsoil. Through an increased activity of soil fauna a loosening of the soil and following a higher porosity and improved water and air permeability should be reached.


Technical methods

Technical methods mainly aim to reduce and control the pressure applied on soil by heavy machinery. First, the idea of controlled wheel traffic is to separate the wheeled tracks and area for plant rooting.Hamza, M. and Anderson, W. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions , Soil and Tillage Research 82 : 121 - 145. Expected is a reduction of area compacted by tyres, reducing negative effects on crop growth. In some areas, GIS-based technology was introduced to better monitor and control the traffic paths. Low tyre pressure is another way to distribute the pressure applied on a greater surface and soften the overall pressure. For an integrated management, computer-based modelling of crop yard for vulnerability to compaction is recommended in order to avoid driving over vulnerable soil.Saffih-Hdadi, K., Défossez, P., Richard, G., Cui, Y.-J., Tang, A.-M. and Chaplain, V. (2009). A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density , Soil and Tillage Research 105 : 96 - 103. No tillage may contribute to better soil condition as it conserves more water than traditional tillage, however as tillage is a preparation of crop yard for coming seeding or planting process, no tillage does not necessary give a positive result in all cases. Loosening of already compacted soil layers by deep ripping may be beneficial for plant growth and soil condition.


See also

*
Land use, land-use change, and forestry Land use, land-use change, and forestry (LULUCF), also referred to as Forestry and other land use (FOLU), is defined by the United Nations Climate Change Secretariat as a " greenhouse gas inventory sector that covers emissions and removals of gr ...


References

{{soil science topics Agricultural land Agricultural soil science Environmental impact of agriculture