HOME

TheInfoList



OR:

In particle theory, the skyrmion () is a topologically stable field configuration of a certain class of non-linear
sigma model In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or ...
s. It was originally proposed as a model of the
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
by (and named after) Tony Skyrme in 1961. As a topological soliton in the
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory. Skyrmions as topological objects are important in solid-state physics, especially in the emerging technology of spintronics. A two-dimensional magnetic skyrmion, as a topological object, is formed, e.g., from a 3D effective-spin "hedgehog" (in the field of micromagnetics: out of a so-called " Bloch point" singularity of homotopy degree +1) by a stereographic projection, whereby the positive north-pole spin is mapped onto a far-off edge circle of a 2D-disk, while the negative south-pole spin is mapped onto the center of the disk. In a spinor field such as for example
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
ic or polariton fluids the skyrmion topology corresponds to a full Poincaré beam (a spin
vortex In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in ...
comprising all the states of polarization mapped by a stereographic projection of the
Poincaré sphere Poincaré sphere may refer to: * Poincaré sphere (optics), a graphical tool for visualizing different types of polarized light ** Bloch sphere, a related tool for representing states of a two-level quantum mechanical system * Poincaré homology s ...
to the real plane). A dynamical pseudospin skyrmion results from the stereographic projection of a rotating polariton Bloch sphere in the case of dynamical full Bloch beams. Skyrmions have been reported, but not conclusively proven, to be in
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
s, thin magnetic films and in chiral nematic
liquid crystals Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. The ...
. As a model of the
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
, the topological stability of the skyrmion can be interpreted as a statement that the baryon number is conserved; i.e. that the proton does not decay. The Skyrme Lagrangian is essentially a one-parameter model of the nucleon. Fixing the parameter fixes the proton radius, and also fixes all other low-energy properties, which appear to be correct to about 30%. It is this predictive power of the model that makes it so appealing as a model of the nucleon. Hollowed-out skyrmions form the basis for the chiral bag model (Cheshire Cat model) of the nucleon. Exact results for the duality between the fermion spectrum and the topological winding number of the non-linear sigma model have been obtained by
Dan Freed Daniel Stuart Freed (born 17 April 1959) is an American mathematician, specializing in global analysis and its applications to supersymmetry, string theory, and quantum field theory. Since 1989, he has been a professor at the University of Texas at ...
. This can be interpreted as a foundation for the duality between a quantum chromodynamics (QCD) description of the nucleon (but consisting only of quarks, and without gluons) and the Skyrme model for the nucleon. The skyrmion can be quantized to form a quantum superposition of baryons and resonance states. It could be predicted from some nuclear matter properties.


Topological soliton

In field theory, skyrmions are homotopically non-trivial classical solutions of a nonlinear sigma model with a non-trivial target manifold topology – hence, they are topological solitons. An example occurs in chiral models of
mesons In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
, where the target manifold is a homogeneous space of the structure group : \left(\frac\right), where SU(''N'')''L'' and SU(''N'')''R'' are the left and right chiral symmetries, and SU(''N'')diag is the diagonal subgroup. In
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
, for ''N'' = 2, the chiral symmetries are understood to be the
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
symmetry of the
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
. For ''N'' = 3, the isoflavor symmetry between the up, down and strange quarks is more broken, and the skyrmion models are less successful or accurate. If
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
has the topology S3×R, then classical configurations can be classified by an integral
winding number In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point, i.e., the curve's number of t ...
because the third homotopy group : \pi_3\left(\frac \cong \operatorname(N)\right) is equivalent to the ring of integers, with the congruence sign referring to
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
. A topological term can be added to the chiral Lagrangian, whose integral depends only upon the
homotopy class In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
; this results in superselection sectors in the quantised model. In (1 + 1)-dimensional spacetime, a skyrmion can be approximated by a soliton of the Sine–Gordon equation; after quantisation by the Bethe ansatz or otherwise, it turns into a fermion interacting according to the massive Thirring model.


Lagrangian

The
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
for the skyrmion, as written for the original chiral SU(2) effective Lagrangian of the nucleon-nucleon interaction (in (3 + 1)-dimensional spacetime), can be written as : \mathcal = \frac\operatorname(L_\mu L^\mu) + \frac \operatorname _\mu, L_\nu ^\mu, L^\nu where L_\mu = U^\dagger \partial_\mu U, U = \exp i\vec\tau \cdot \vec\theta, \vec\tau are the
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
Pauli matrices In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used ...
, cdot, \cdot/math> is the
Lie bracket In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
commutator, and tr is the matrix trace. The meson field (
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
field, up to a dimensional factor) at spacetime coordinate x is given by \vec\theta = \vec\theta(x). A broad review of the geometric interpretation of L_\mu is presented in the article on
sigma model In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or ...
s. When written this way, the U is clearly an element of the Lie group SU(2), and \vec\theta an element of the Lie algebra su(2). The pion field can be understood abstractly to be a
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
of the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
of the principal fiber bundle of SU(2) over spacetime. This abstract interpretation is characteristic of all non-linear sigma models. The first term, \operatorname(L_\mu L^\mu) is just an unusual way of writing the quadratic term of the non-linear sigma model; it reduces to -\operatorname(\partial_\mu U^\dagger \partial^\mu U). When used as a model of the nucleon, one writes : U = \frac(\sigma + i\vec\tau \cdot \vec\pi), with the dimensional factor of f_\pi being the pion decay constant. (In 1 + 1 dimensions, this constant is not dimensional and can thus be absorbed into the field definition.) The second term establishes the characteristic size of the lowest-energy soliton solution; it determines the effective radius of the soliton. As a model of the nucleon, it is normally adjusted so as to give the correct radius for the proton; once this is done, other low-energy properties of the nucleon are automatically fixed, to within about 30% accuracy. It is this result, of tying together what would otherwise be independent parameters, and doing so fairly accurately, that makes the Skyrme model of the nucleon so appealing and interesting. Thus, for example, constant g in the quartic term is interpreted as the vector-pion coupling ρ–π–π between the
rho meson Rho (uppercase Ρ, lowercase ρ or ; el, ρο or el, ρω, label=none) is the 17th letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the sa ...
(the nuclear
vector meson In high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as ). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses. The vector meson ...
) and the pion; the skyrmion relates the value of this constant to the baryon radius.


Noether current

The local winding number density is given by : B^\mu = \epsilon^ \operatornameL_\nu L_\alpha L_\beta, where \epsilon^ is the totally antisymmetric
Levi-Civita symbol In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the parity of a permutation, sign of a permutation of the n ...
(equivalently, the Hodge star, in this context). As a physical quantity, this can be interpreted as the baryon current; it is conserved: \partial_\mu B^\mu = 0, and the conservation follows as a Noether current for the chiral symmetry. The corresponding
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
is the baryon number: : B = \int d^3x\, B^0(x). As a conserved charge, it is time-independent: dB/dt = 0, the physical interpretation of which is that protons do not decay. In the chiral bag model, one cuts a hole out of the center and fills it with quarks. Despite this obvious "hackery", the total baryon number is conserved: the missing charge from the hole is exactly compensated by the spectral asymmetry of the vacuum fermions inside the bag.


Magnetic materials/data storage

One particular form of skyrmions is magnetic skyrmions, found in magnetic materials that exhibit spiral magnetism due to the Dzyaloshinskii–Moriya interaction, double-exchange mechanism or competing Heisenberg exchange interactions. They form "domains" as small as 1 nm (e.g. in Fe on Ir(111)). The small size and low energy consumption of magnetic skyrmions make them a good candidate for future data-storage solutions and other spintronics devices. Researchers could read and write skyrmions using scanning tunneling microscopy. The topological charge, representing the existence and non-existence of skyrmions, can represent the bit states "1" and "0". Room-temperature skyrmions were reported. Skyrmions operate at current densities that are several orders of magnitude weaker than conventional magnetic devices. In 2015 a practical way to create and access magnetic skyrmions under ambient room-temperature conditions was announced. The device used arrays of magnetized cobalt disks as artificial Bloch skyrmion lattices atop a thin film of
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
and
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself na ...
. Asymmetric magnetic nanodots were patterned with controlled circularity on an underlayer with perpendicular magnetic
anisotropy Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
(PMA). Polarity is controlled by a tailored magnetic-field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted into the underlayer's interfacial region by suppressing the PMA by a critical ion-irradiation step. The lattices are identified with polarized
neutron reflectometry Neutron reflectometry is a neutron diffraction technique for measuring the structure of thin films, similar to the often complementary techniques of X-ray reflectivity and ellipsometry. The technique provides valuable information over a wide var ...
and have been confirmed by magnetoresistance measurements. A recent (2019) study demonstrated a way to move skyrmions, purely using electric field (in the absence of electric current). The authors used Co/Ni multilayers with a thickness slope and Dzyaloshinskii–Moriya interaction and demonstrated skyrmions. They showed that the displacement and velocity depended directly on the applied voltage. In 2020, a team of researchers from the
Swiss Federal Laboratories for Materials Science and Technology The Swiss Federal Laboratories for Materials Science and Technology (Empa, German acronym for ''Eidgenössische Materialprüfungs- und Forschungsanstalt'') is an interdisciplinary Swiss research institute for applied materials sciences and tech ...
(Empa) has succeeded for the first time in producing a tunable multilayer system in which two different types of skyrmions – the future bits for "0" and "1" – can exist at room temperature.


See also

*
Hopfion A hopfion is a topological soliton. It is a stable three-dimensional localised configuration of a three-component field \vec=(n_x,n_y,n_z) with a knotted topological structure. They are the three-dimensional counterparts of skyrmions, which exhib ...
, 3D counterpart of skyrmions


References


Further reading


Developments in Magnetic Skyrmions Come in Bunches
IEEE Spectrum ''IEEE Spectrum'' is a magazine edited by the Institute of Electrical and Electronics Engineers. The first issue of ''IEEE Spectrum'' was published in January 1964 as a successor to ''Electrical Engineering''. The magazine contains peer-reviewe ...
2015 web article * {{Authority control Hypothetical particles Quantum chromodynamics