HOME

TheInfoList



OR:

Second-harmonic imaging microscopy (SHIM) is based on a
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many oth ...
optical effect known as
second-harmonic generation Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy o ...
(SHG). SHIM has been established as a viable
microscope A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisi ...
imaging contrast mechanism for visualization of
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
and tissue structure and function. A second-harmonic microscope obtains contrasts from variations in a specimen's ability to generate second-harmonic light from the incident light while a conventional optical microscope obtains its contrast by detecting variations in
optical density Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
, path length, or
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
of the specimen. SHG requires intense
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
light passing through a material with a noncentrosymmetric molecular structure, either inherent or induced externally, for example by an electric field. Second-harmonic light emerging from an SHG material is exactly half the wavelength (frequency doubled) of the light entering the material. While two-photon-excited fluorescence (TPEF) is also a two photon process, TPEF loses some energy during the relaxation of the excited state, while SHG is energy conserving. Typically, an inorganic crystal is used to produce SHG light such as
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
(LiNbO3),
potassium titanyl phosphate Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
(KTP = KTiOPO4), and
lithium triborate Lithium triborate (LiB3O5) or LBO is a non-linear optics crystal. It has a wide transparency range, moderately high nonlinear coupling, high damage threshold and desirable chemical and mechanical properties. This crystal is often used for seco ...
(LBO = LiB3O5). Though SHG requires a material to have specific molecular orientation in order for the incident light to be frequency doubled, some biological materials can be highly polarizable, and assemble into fairly ordered, large noncentrosymmetric structures. While some biological materials such as collagen,
microtubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27  nm and have an inner diameter between 11 a ...
, and muscle
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin (M ...
can produce SHG signals, even water can become ordered and produce second-harmonic signal under certain conditions, which allows SH microscopy to image surface potentials without any labeling molecules. The SHG pattern is mainly determined by the phase matching condition. A common setup for an SHG imaging system will have a laser scanning microscope with a titanium sapphire mode-locked laser as the excitation source. The SHG signal is propagated in the forward direction. However, some experiments have shown that objects on the order of about a tenth of the
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
of the SHG produced signal will produce nearly equal forward and backward signals.


Advantages

SHIM offers several advantages for live cell and tissue imaging. SHG does not involve the excitation of molecules like other techniques such as
fluorescence microscopy A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscop ...
therefore, the molecules shouldn't suffer the effects of
phototoxicity Phototoxicity, also called photoirritation, is a chemically induced skin irritation, requiring light, that does not involve the immune system. It is a type of photosensitivity. The skin response resembles an exaggerated sunburn. The involved chemi ...
or
photobleaching In optics, photobleaching (sometimes termed fading) is the photochemical alteration of a dye or a fluorophore molecule such that it is permanently unable to fluoresce. This is caused by cleaving of covalent bonds or non-specific reactions between ...
. Also, since many biological structures produce strong SHG signals, the labeling of molecules with
exogenous In a variety of contexts, exogeny or exogeneity () is the fact of an action or object originating externally. It contrasts with endogeneity or endogeny, the fact of being influenced within a system. Economics In an economic model, an exogen ...
probes is not required which can also alter the way a biological system functions. By using
near infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from arou ...
wavelengths for the incident light, SHIM has the ability to construct
three-dimensional Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called '' parameters'') are required to determine the position of an element (i.e., point). This is the inform ...
images of specimens by imaging deeper into thick tissues.


Difference and complementarity with two-photon fluorescence (2PEF)

Two-photons
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
( 2PEF) is a very different process from SHG: it involves excitation of electrons to higher energy levels, and subsequent de-excitation by photon emission (unlike SHG, although it is also a 2-photon process). Thus, 2PEF is a non
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deriv ...
process, spatially (emitted isotropically) and temporally (broad, sample-dependent spectrum). It is also not specific to certain structure, unlike SHG. It can therefore be coupled to SHG in multiphoton imaging to reveal some molecules that do produce autofluorescence, like
elastin Elastin is a protein that in humans is encoded by the ''ELN'' gene. Elastin is a key component of the extracellular matrix in gnathostomes (jawed vertebrates). It is highly elastic and present in connective tissue allowing many tissues in the bo ...
in tissues (while SHG reveals
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
or
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin (M ...
for instance).


History

Before SHG was used for imaging, the first demonstration of SHG was performed in 1961 by P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill at the University of Michigan, Ann Arbor using a quartz sample. In 1968, SHG from interfaces was discovered by Bloembergen and has since been used as a tool for characterizing surfaces and probing interface dynamics. In 1971, Fine and Hansen reported the first observation of SHG from biological tissue samples. In 1974, Hellwarth and Christensen first reported the integration of SHG and microscopy by imaging SHG signals from polycrystalline
ZnSe Zinc selenide (ZnSe) is a light-yellow, solid compound comprising zinc (Zn) and selenium (Se). It is an intrinsic semiconductor with a band gap of about 2.70  eV at . ZnSe rarely occurs in nature, and is found in the mineral that was named af ...
. In 1977, Colin Sheppard imaged various SHG crystals with a scanning optical microscope. The first biological imaging experiments were done by Freund and Deutsch in 1986 to study the orientation of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
fibers in rat tail
tendon A tendon or sinew is a tough, high-tensile-strength band of dense fibrous connective tissue that connects muscle to bone. It is able to transmit the mechanical forces of muscle contraction to the skeletal system without sacrificing its ability ...
. In 1993, Lewis examined the second-harmonic response of styryl
dye A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and ...
s in
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
s. He also showed work on imaging live cells. In 2006, Goro Mizutani group developed a non-scanning SHG microscope that significantly shortens the time required for observation of large samples, even if the two-photons wide-field microscope was published in 1996 and could have been used to detect SHG. The non-scanning SHG microscope was used for observation of plant
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human die ...
, megamolecule,
spider silk Spider silk is a protein fibre spun by spiders. Spiders use their silk to make webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. They can ...
and so on. In 2010 SHG was extended to whole-animal
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and p ...
imaging. In 2019, SHG applications widened when it was applied to the use of selectively imaging agrochemicals directly on leaf surfaces to provide a way to evaluate the effectiveness of pesticides.


Quantitative measurements


Orientational anisotropy

SHG polarization
anisotropy Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
can be used to determine the orientation and degree of organization of proteins in tissues since SHG signals have well-defined polarizations. By using the anisotropy equation: \frac=r and acquiring the intensities of the polarizations in the parallel and perpendicular directions. A high r value indicates an anisotropic orientation whereas a low r value indicates an isotropic structure. In work done by Campagnola and Loew, it was found that collagen fibers formed well-aligned structures with an r=0.7 value.


Forward over backward SHG

SHG being a
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deriv ...
process ( spatially and temporally), it keeps information on the direction of the excitation and is not emitted isotropically. It is mainly emitted in forward direction (same as excitation), but can also be emitted in backward direction depending on the phase-matching condition. Indeed, the coherence length beyond which the conversion of the signal decreases is: l_c = 2/\Delta k with \Delta k \propto 1/(n_-n_) for forward, but \Delta k_ \propto 1/(n_+n_) for backward such that l_c >> l_. Therefore, thicker structures will appear preferentially in forward, and thinner ones in backward: since the SHG conversion depends at first approximation on the square of the number of nonlinear converters, the signal will be higher if emitted by thick structures, thus the signal in forward direction will be higher than in backward. However, the tissue can scatter the generated light, and a part of the SHG in forward can be retro-reflected in the backward direction. Then, the forward-over-backward ratio F/B can be calculated, and is a metric of the global size and arrangement of the SHG converters (usually collagen fibrils). It can also be shown that the higher the out-of-plane angle of the scatterer, the higher its F/B ratio (see fig. 2.14 of ).


Polarization-resolved SHG

The advantages of
polarimetry Polarimetry is the measurement and interpretation of the polarization of transverse waves, most notably electromagnetic waves, such as radio or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or ...
were coupled to SHG in 2002 by Stoller et al. Polarimetry can measure the orientation and order at molecular level, and coupled to SHG it can do so with the specificity to certain structures like collagen: polarization-resolved SHG microscopy (p-SHG) is thus an expansion of SHG microscopy. p-SHG defines another anisotropy parameter, as: \rho = \sqrt which is, like ''r'', a measure of the principal orientation and disorder of the structure being imaged. Since it is often performed in long cylindrical filaments (like collagen), this anisotropy is often equal to \rho = \frac , where \chi^ is the nonlinear susceptibility tensor and X the direction of the filament (or main direction of the structure), Y orthogonal to X and Z the propagation of the excitation light. The orientation ''ϕ'' of the filaments in the plane XY of the image can also be extracted from p-SHG by FFT analysis, and put in a map.


Fibrosis quantization

Collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
(particular case, but widely studied in SHG microscopy), can exist in various forms : 28 different types, of which 5 are fibrillar. One of the challenge is to determine and quantify the amount of fibrillar collagen in a tissue, to be able to see its evolution and relationship with other non-collagenous materials. To that end, a SHG microscopy image has to be corrected to remove the small amount of residual fluorescence or noise that exist at the SHG wavelength. After that, a
mask A mask is an object normally worn on the face, typically for protection, disguise, performance, or entertainment and often they have been employed for rituals and rights. Masks have been used since antiquity for both ceremonial and pra ...
can be applied to quantify the collagen inside the image. Among other quantization techniques, it is probably the one with the highest specificity, reproductibility and applicability despite being quite complex.


Others

It has also been used to prove that backpropagating action potentials invade dendritic spines without voltage attenuation, establishing a sound basis for future work on
Long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
. Its use here was that it provided a way to accurately measure the voltage in the tiny dendritic spines with an accuracy unattainable with standard two-photon microscopy. Meanwhile, SHG can efficiently convert near-infrared light to visible light to enable imaging-guided photodynamic therapy, overcoming the penetration depth limitations.


Materials that can be imaged

SHG microscopy and its expansions can be used to study various tissues: some example images are reported in the figure below: collagen inside the extracellular matrix remains the main application. It can be found in tendon, skin, bone, cornea, aorta, fascia, cartilage, meniscus, intervertebral disks... Myosin can also be imaged in skeletal muscle or cardiac muscle.


Coupling with THG microscopy

Third-Harmonic Generation (THG) microscopy can be complementary to SHG microscopy, as it is sensitive to the transverse interfaces, and to the 3rd order nonlinear susceptibility \chi^


Applications


Cancer progression, tumor characterization

The mammographic density is correlated with the
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
density, thus SHG can be used for identifying
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or ...
. SHG is usually coupled to other nonlinear techniques such as Coherent anti-Stokes Raman Scattering or
Two-photon excitation microscopy Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that allows imaging of living tissue up to about one millimeter in thickness, with 0.64 μm lateral and 3.35 μm axial spatial resolution. Unlike traditional fl ...
, as part of a routine called multiphoton microscopy (or tomography) that provides a non-invasive and rapid in vivo
histology Histology, also known as microscopic anatomy or microanatomy, is the branch of biology which studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures v ...
of
biopsies A biopsy is a medical test commonly performed by a surgeon, interventional radiologist, or an interventional cardiologist. The process involves extraction of sample cells or tissues for examination to determine the presence or extent of a disea ...
that may be cancerous.


Breast cancer

The comparison of forward and backward SHG images gives insight about the microstructure of collagen, itself related to the grade and stage of a
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
, and its progression in
breast The breast is one of two prominences located on the upper ventral region of a primate's torso. Both females and males develop breasts from the same embryological tissues. In females, it serves as the mammary gland, which produces and sec ...
. Comparison of SHG and 2PEF can also show the change of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
orientation in tumors. Even if SHG microscopy has contributed a lot to breast cancer research, it is not yet established as a reliable technique in
hospitals A hospital is a health care institution providing patient treatment with specialized health science and auxiliary healthcare staff and medical equipment. The best-known type of hospital is the general hospital, which typically has an emerge ...
, or for diagnostic of this
pathology Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
in general.


Ovarian cancer

Healthy ovaries present in SHG a uniform
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellu ...
layer and well-organized collagen in their stroma, whereas abnormal ones show an epithelium with large cells and a changed collagen structure. The r ratio is also used to show that the alignment of fibrils is slightly higher for cancerous than for normal tissues.


Skin cancer

SHG is, again, combined to 2PEF is used to calculate the ratio: MFSI=(\text-\text)/(\text+\text) where shg (resp. tpef) is the number of thresholded pixels in the SHG (resp. 2PEF) image, a high MFSI meaning a pure SHG image (with no fluorescence). The highest MFSI is found in cancerous tissues, which provides a contrast mode to differentiate from normal tissues. SHG was also combined to Third-Harmonic Generation (THG) to show that backward THG is higher in tumors.


Pancreatic cancer

Changes in collagen ultrastructure in
pancreatic The pancreas is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e. it has both an endocr ...
cancer can be investigated by multiphoton fluorescence and polarization-resolved SHIM.


Other cancers

SHG microscopy was reported for the study of
lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of ...
, colonic, esophageal stroma and cervical cancers.


Pathologies detection

Alterations in the organization or polarity of the
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
fibrils can be signs of pathology,. In particular, the anisotropy of alignment of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
fibers allowed to discriminate healthy
dermis The dermis or corium is a layer of skin between the epidermis (with which it makes up the cutis) and subcutaneous tissues, that primarily consists of dense irregular connective tissue and cushions the body from stress and strain. It is divided ...
against pathological scars in
skin Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation. Other animal coverings, such as the arthropod exoskeleton, have different ...
. Also, pathologies in
cartilage Cartilage is a resilient and smooth type of connective tissue. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck ...
such as
osteoarthritis Osteoarthritis (OA) is a type of degenerative joint disease that results from breakdown of joint cartilage and underlying bone which affects 1 in 7 adults in the United States. It is believed to be the fourth leading cause of disability in the ...
can be probed by polarization-resolved SHG microscopy,. SHIM was later extended to fibro-cartilage ( meniscus).


Tissue engineering

The ability of SHG to image specific molecules can reveal the structure of a certain tissue one material at a time, and at various scales (from macro to micro) using microscopy. For instance, the
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
(type I) is specifically imaged from the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide s ...
(ECM) of cells, or when it serves as a scaffold or conjonctive material in tissues. SHG also reveals fibroin in
silk Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from th ...
,
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin (M ...
in
muscles Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of musc ...
and biosynthetized
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wa ...
. All of this imaging capability can be used to design artificials tissues, by targeting specific points of the tissue : SHG can indeed quantitatively measure some orientations, and material quantity and arrangement. Also, SHG coupled to other multiphoton techniques can serve to monitor the development of engineered tissues, when the sample is relatively thin however. Of course, they can finally be used as a quality control of the fabricated tissues.


Structure of the eye

Cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical ...
, at the surface of the eye, is considered to be made of plywood-like structure of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
, due to the self-organization properties of sufficiently dense
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
. Yet, the collagenous orientation in lamellae is still under debate in this tissue.
Keratoconus Keratoconus (KC) is a disorder of the eye that results in progressive thinning of the cornea. This may result in blurry vision, double vision, nearsightedness, irregular astigmatism, and light sensitivity leading to poor quality-of-life. ...
cornea can also be imaged by SHG to reveal morphological alterations of the
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
. Third-Harmonic Generation (THG) microscopy is moreover used to image the
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical ...
, which is complementary to SHG signal as THG and SHG maxima in this tissue are often at different places.


See also

*
Second-harmonic generation Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy o ...
*
Nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typic ...
*
Two-photon excitation microscopy Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that allows imaging of living tissue up to about one millimeter in thickness, with 0.64 μm lateral and 3.35 μm axial spatial resolution. Unlike traditional fl ...


Sources

* * * * * * * * * * *


References

{{Lasers Microscopy Cell imaging Laboratory equipment Optical microscopy