HOME

TheInfoList



OR:

Surface-mount technology Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred ...
(SMT) component placement systems, commonly called pick-and-place machines or P&Ps, are
robotic Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrate ...
machines which are used to place surface-mount devices (SMDs) onto a
printed circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich str ...
(PCB). They are used for high speed, high precision placing of a broad range of electronic components, like
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
s,
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
s,
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s onto the PCBs which are in turn used in
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
s, consumer electronics as well as industrial, medical, automotive, military and telecommunications equipment. Similar equipment exists for
through-hole In electronics, through-hole technology (also spelled "thru-hole") is a manufacturing scheme in which leads on the components are inserted through holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side, either ...
components. This type of equipment is sometimes also used to package microchips using the
flip chip Flip chip, also known as controlled collapse chip connection or its abbreviation, C4, is a method for interconnecting dies such as semiconductor devices, IC chips, integrated passive devices and microelectromechanical systems (MEMS), to extern ...
method.


History


1980s and 1990s

During this time, a typical SMT assembly line employed two different types of pick-and-place (P&P) machines arranged in sequence. The unpopulated board was fed into a rapid placement machine. These machines, sometimes called chip shooters, place mainly low-precision, simple package components such as resistors and capacitors. These high-speed P&P machines were built around a single turret design capable of mounting up to two dozen stations. As the turret spins, the stations passing the back of the machine pick up parts from tape feeders mounted on a moving carriage. As the station proceeds around the turret, it passes an optical station that calculates the angle at which the part was picked up, allowing the machine to compensate for drift. Then, as the station reaches the front of the turret, the board is moved into the proper position, the nozzle is spun to put the part in proper angular orientation, and the part is placed on the board. Typical chip shooters can, under optimal conditions, place up to 53,000 parts per hour, or almost 15 parts per second. Because the PCB is moved rather than the turret, only lightweight parts that will not be shaken loose by the violent motion of the PCB can be placed this way. From the high speed machine, the board transits to a precision placement machine. These pick-and-place machines often use high resolution verification cameras and fine adjustment systems via high precision linear encoders on each axis to place parts more accurately than the high-speed machines. Furthermore, the precision placement machines are capable of handling larger or more irregularly shaped parts such as large package integrated circuits or packaged inductor coils and trimpots. Unlike the rapid placers, precision placers generally do not use turret mounted nozzles and instead rely on a gantry-supported moving head. These precision placers rely upon placement heads with relatively few pickup nozzles. The head sometimes has a laser identifier that scans a reflective marker on the PC board to orient the head to the board. Parts are picked up from tape feeders or trays, scanned by a camera (on some machines), and then placed in the proper position on the board. Some machines also center the parts on the head with two arms that close to center the part; the head then rotates 90 degrees and the arms close again to center the part once more. The margin of error for some components is, in many cases, less than half a millimeter (less than 0.02 inches).


2000 to present

Due to the huge cost of having two separate machines to place parts, the speed limitations of the chip shooters, and the inflexibility of the machines, the electronic component machine manufacturers abandoned the technique. To overcome these limitations they moved to an all-in-one modular, multi-headed, and multi-gantry machines that could have heads quickly swapped on different modules depending on the product being built to machines with multiple mini turrets capable of placing the whole spectrum of components with theoretical speeds of 136,000 components an hour. The fastest machines can have speeds of up to 200,000 CPH (components per hour).


2010 onwards

Swapping heads onboard placement machines required more inventory of heads and related spare parts for different heads to minimize the downtime. Placement machines have an all-in-one head that can place components ranging from 0.4 mm × 0.2 mm to 50 mm × 40 mm. In addition to this there was a new concept wherein the user could borrow performance during peak periods. There is a big change in the industry approach these days with more focus on software applications for the process. With new applications like POP and wafer placement on substrate the industry is moving beyond conventional component placement. There is a big difference in the needs of SMT users. For many, the high speed machines are not suitable due to cost and speed. With recent changes in the economic climate the requirement for SMT placement becomes focused on the machine's versatility to deal with short runs and fast changeover. This means that lower cost machines with vision systems provide an affordable option for SMT users. There are more users of low end and mid-range machines than the ultra fast placement systems. SMT pick and place machine manufacturers include: * Juki * Fuji * Panasonic * Yamaha (bought I-Pulse, however they were marketed to the US and Europe as Assembleon. Yamaha was marketed to primarily Asia, until the acquisition of Assembleon by K&S.) * Hanwha Precision Machinery (formerly Hanwha Techwin after the acquisition of Samsung Techwin by Hanwha Holdings.) * Kulicke & Soffa (K&S) (former Philips and later Assembleon) * Sony (Now Juki) * ASM Assembly Systems (former SIEMENS / SIPLACE and DEK) * Universal Instruments * Mycronic * Europlacer * NEODEN * Essemtec * Nordson (Bought Dima) * Hitachi (Former Sanyo, SMT division sold to Yamaha) * DDM Novastar * Opulo


Operation

The placement equipment is part of a larger overall machine that carries out specific programmed steps to create a
PCB assembly A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich struct ...
. Several sub-systems work together to ''pick up'' and correctly ''place'' the components onto the PCB. These systems normally use pneumatic
suction cup A suction cup, also known as a sucker, is a device or object that uses the negative Pressure#Fluid pressure, fluid pressure of air or water to adhere to Porosity, nonporous surfaces, creating a Vacuum, partial vacuum. Suction cups are peripher ...
s, attached to a
plotter A plotter is a machine that produces vector graphics drawings. Plotters draw lines on paper using a pen, or in some applications, use a knife to cut a material like vinyl or leather. In the latter case, they are sometimes known as a cutting ...
-like device to allow the cup to be accurately manipulated in three dimensions. Additionally, each nozzle can be rotated independently.


Component feeds

Surface mount components are placed along the front (and often back) faces of the machine. Most components are supplied on paper or plastic tape, in tape reels that are loaded onto feeders mounted to the machine. Larger
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s (ICs) are sometimes supplied arranged in trays which are stacked in a compartment. More commonly ICs will be provided in tapes rather than trays or sticks. Improvements in feeder technology mean that tape format is becoming the preferred method of presenting parts on an SMT machine. Early feeder heads were much bulkier, and as a result it was not designed to be the mobile part of the system. Rather, the PCB itself was mounted on a moving platform that aligned the areas of the board to be populated with the feeder head above.


Conveyor belt

Through the middle of the machine there is a conveyor belt, along which blank PCBs travel, and a PCB clamp in the center of the machine. The PCB is clamped, and the nozzles pick up individual components from the feeders/trays, rotate them to the correct orientation and then place them on the appropriate pads on the PCB with high precision. High-end machines can have multiple conveyors to produce multiple same or different kinds of products simultaneously.


Inspection

The part is carried from the part feeders on either side of the conveyor belt to the PCB, it is photographed from below. Its silhouette is
inspect An inspection is, most generally, an organized examination or formal evaluation exercise. In engineering activities inspection involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity. ...
ed to see if it is damaged or missing (was not picked up), and the inevitable registration errors in pickup are measured and compensated for when the part is placed. For example, if the part was shifted 0.25 mm and rotated 10° when picked up, the pickup head will adjust the placement position to place the part in the correct location. Some machines have these optical systems on the robot arm and can carry out the optical calculations without losing time, thereby achieving a lower derating factor. The high-end optical systems mounted on the heads can also be used to capture details of the non-standard type components and save them to a database for future use. In addition to this, advanced software is available for monitoring the production and interconnect database — of the production floor to that of supply chain — in real-time. ASM provides an optional feature for increasing accuracy while placing LED components on a high end product where in the optical center of the LED is critical rather than the calculated mechanical center based on the component's lead structure. The special camera system measures both physical and optical center and makes the necessary adjustments before placement. A separate camera on the pick-and-place head photographs fiducial marks on the PCB to measure its position on the conveyor belt accurately. Two fiducial marks, measured in two dimensions each, usually placed diagonally, let the PCB's orientation and
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kin ...
be measured and compensated for as well. Some machines are also able to measure the PCB shear by measuring a third fiducial mark on the PCB.


Variations

To minimize the distance the pickup gantry must travel, it is common to have multiple nozzles with separate vertical motion on a single gantry. This can pick up multiple parts with one trip to the feeders. Also, advanced software in the newer generation machines allows different robotic heads to work independently of each other to further increase the throughput. The components may be temporarily adhered to the PCB using the wet solder paste itself, or by using small blobs of a separate
adhesive Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation. The use of adhesives offers certain advant ...
, applied by a glue-dispensing machine that can be incorporated on to the pick and place machine. The glue is added before component placement. It is dispensed by nozzles or by using jet dispensing. Jet dispensing dispenses material by shooting it towards the target, which in this case, is the circuit board.


See also

*
Component placement Component placement is an electronics manufacturing process that places electrical components precisely on printed circuit boards (PCBs) to create electrical interconnections between functional components and the interconnecting circuitry in the PC ...


References

{{DEFAULTSORT:Smt Placement Equipment Printed circuit board manufacturing