HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, the superreal numbers are a class of extensions of the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
, introduced by H. Garth Dales and W. Hugh Woodin as a generalization of the
hyperreal number In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be finite if, and only if, , x, for some integer n
s and primarily of interest in
non-standard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
,
model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
, and the study of Banach algebras. The field of superreals is itself a subfield of the
surreal number In mathematics, the surreal number system is a total order, totally ordered proper class containing not only the real numbers but also Infinity, infinite and infinitesimal, infinitesimal numbers, respectively larger or smaller in absolute value th ...
s. Dales and Woodin's superreals are distinct from the super-real numbers of David O. Tall, which are lexicographically ordered fractions of
formal power series In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial su ...
over the reals.


Formal definition

Suppose ''X'' is a
Tychonoff space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a ...
and C(''X'') is the
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
of continuous real-valued functions on ''X''. Suppose ''P'' is a
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
in C(''X''). Then the factor algebra ''A'' = C(''X'')/''P'' is by definition an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
that is a real algebra and that can be seen to be
totally ordered In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( r ...
. The
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
''F'' of ''A'' is a superreal field if ''F'' strictly contains the real numbers \R, so that ''F'' is not order isomorphic to \R. If the prime ideal ''P'' is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
, then ''F'' is a field of hyperreal numbers (Robinson's hyperreals being a very special case).


References


Bibliography

* * {{DEFAULTSORT:Superreal Number Field (mathematics) Real closed field Nonstandard analysis