HOME

TheInfoList



OR:

Supermembranes are hypothesized objects that live in the 11-dimensional theory called
M-Theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's ...
and should also exist in 11-dimensional
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
. Supermembranes are a generalisation of
superstrings Superstring theory is an theory of everything, attempt to explain all of the Elementary particle, particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetry, supersymmetric String (physics), st ...
to another dimension. Supermembranes are 2-dimensional surfaces. For example, they can be spherical or shaped like a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
. As in
superstring Superstring theory is an theory of everything, attempt to explain all of the Elementary particle, particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetry, supersymmetric String (physics), st ...
theory the vibrations of the supermembranes correspond to different particles. Supermembranes also exhibit a symmetry called
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
without which the vibrations would only correspond to
bosons In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
and not
fermions In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
.


Energy

The energy of a classical supermembrane is given by its surface area. One consequence of this is that there is no difference between one or two membranes since two membranes can be connected by a long 1 dimensional string of zero area. Hence, the idea of 'membrane-number' has no meaning. A second consequence is that unlike strings a supermembrane's vibrations can represent several particles at once. In technical terms this means it is already 'second-quantized'. All the particles in the Universe can be thought to arise as vibrations of a single membrane.


Spectrum

When going from the classical theory to the quantum theory of supermembranes it is found that they can only exist in 11 dimensions, just as superstrings can only exist in 10 dimensions. When examining the energy spectrum (the allowed frequencies that a string can vibrate in) it was found that they can only be in discrete values corresponding to the masses of different particles. It has been shown: * The energy spectrum for the classical bosonic membrane is continuous. * The energy spectrum for the quantum bosonic membrane is discrete. * The energy spectrum for the quantum supermembrane is continuous. At first the discovery that the spectrum was continuous was thought to mean the theory didn't make sense. But it was realised that it meant that supermembranes actually correspond to multiple particles. (The continuous degrees of freedom corresponding to the coordinates/momenta of the additional particles).


Action

The action for a classical membrane is simply the surface area of the world sheet. The quantum version is harder to write down, is non-linear and very difficult to solve. Unlike the superstring action which is quadratic, the supermembrane action is quartic which makes it exponentially harder. Adding to this the fact that a membrane can represent many particles at once not much progress has been made on supermembranes.


Low energy sector

It has been proven that the low energy vibrations of the supermembrane correspond to the particles in 11 dimensional supergravity.


Topology

A supermembrane can have multiple thing tubes or strings coming out of it with little or no extra energy cost since strings, for example, have no area. This means that all orientable topologies of membranes are physically the same. Also, joined and disjointed supermembranes are physically the same. Thus the topology of a supermembrane has no physical meaning.


Mathematics

The infinite supermembrane can be described in terms of an infinite number of patches. The coordinates of (each patch of) a supermembrane at any casual slice of time are 11 dimensional and depend on two continuous parameters (\sigma,\theta) and a third integer parameter (k) denoting the patch number: :X^k_\mu(\sigma,\theta) = x^k_\mu + O(\sigma,\theta) Therefore the super membrane can describe an infinite number of particles if we associate somehow the coordinate of each particle with some topological property of the patches - perhaps holes in the membrane or closed loops.


Supermembrane Field Theory

Since supermembranes correspond to multiple particles the field theory of membranes correspond to a
Fock space The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space . It is named after V. A. Fock who first intr ...
. Informally, let a(x) denote the continuous degrees of freedom in the energy spectrum: :\Phi = \Phi ,\mathbf,..= \phi(x) + \int \mathbf(y) \phi(x,y) dy + \int \mathbf(y)\mathbf(z) \phi(x,y,z)dydz + ... The action can be written as : S = \int \Phi \mathbf \Phi D /math> where Q is the kinetic operator. No interaction terms are needed since there is no concept of membrane number. Everything is the same membrane. The action is not quite the same type as the one for superstrings or particles since it involves terms with multiple particles. The terms relating to single fields must recover the classical field equations of
Dirac Distributed Research using Advanced Computing (DiRAC) is an integrated supercomputing facility used for research in particle physics, astronomy and cosmology in the United Kingdom. DiRAC makes use of multi-core processors and provides a variety of ...
, Maxwell and
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
. The
propagator In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In ...
to get from a state with membrane X to one at another conformal slice with membrane Y is: : G(X,Y) = \mathbf(X,Y) And since each membrane corresponds to any number of identical particles this is equivalent to all the Green's functions for many particle collisions at once! Although it looks like a lot of things simplify in the supermembrane picture, the actual form of the kinetic operator Q is yet unknown and must be a very complicated operator acting on an infinite Fock-like space. Hence the seeming simplicity of the theory is hidden in this operator.


Cosmology

Since the vibrations of a supermembrane of infinite energy can correspond to every particle in the Universe at once it is possible to interpret the supermembrane as equivalent to the Universe. i.e. all that exists is the supermembrane. It makes no difference to say we live on this supermembrane or that we are in 11 dimensional space-time. Every state of the Universe corresponds to a supermembrane and every history of the Universe corresponds to a supermembrane world volume. What we think of as space-time coordinates can equally be thought of as vector fields on the 2+1 dimensional supermembrane. For a supermembrane moving at the speed of light, its world volume can be zero due to the metric (+++-). Thus the Big Bang can be thought of as a spherical membrane expanding at the speed of light. This has interesting interpretations in terms of the
holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
.


Geometry

Because the supermembrane(s) correspond to all particles at a particular causal time slice, it also corresponds to all the gravitons particles (which are particular vibrational modes). Thus the geometry of the 2+1D supermembrane contains within it the description of the geometry of the (macroscopic) 10+1D space-time. But as it is a quantum theory it gives probabilities for different space-times consistent with observation. The different space-times may only differ microscopically whereas the macroscopic space-time is smooth. In other words, the geometry of the membrane determines the geometry of (macroscopic) space-time. This is different from string theory where only condensates of many separate strings can macroscopically determine the space-time.


Super-5-branes

M-Theory and 11D supergravity also predict 5+1D objects called super-5-
branes In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. Branes are dynamical objects which can propagate through spacetime accordin ...
. An alternative cosmological theory is that we live on one of these branes.


Compactification

Compactifying one space-time dimension on a circle and wrapping the membrane around this circle gives us superstring theory. To get back to our 3+1 dimensional universe the space-time coordinates need to be compactified on a 7 dimensional manifold (of G2 holonomy). Not much is known about these types of shapes.


Matrix Theory

Matrix theory In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begi ...
is a particular way of formulating supermembrane theory. It is still in development. The diagonal entries of an infinite dimensional matrix can be thought of as different supermembranes (parts) connected by 1 dimensional strings.


References

*J. Hughes, L Jun, J Polchinski, "Supermembranes", Physics Letters B (1988) * * {{refend String theory Supersymmetry