Super Saturn
   HOME

TheInfoList



OR:

A ring system is a disc or ring, orbiting an
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets. A ring system around a planet is also known as a planetary ring system. The most prominent and most famous planetary rings in the Solar System are those around Saturn, but the other three giant planets ( Jupiter, Uranus, and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
) also have ring systems. Recent evidence suggests that ring systems may also be found around other types of astronomical objects, including minor planets, moons, and brown dwarfs, and as well, the interplanetary spaces between planets such as Venus and
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
.


Ring systems of planets

There are three ways that thicker planetary rings have been proposed to have formed: from material of the protoplanetary disk that was within the Roche limit of the planet and thus could not coalesce to form moons, from the debris of a moon that was disrupted by a large impact, or from the debris of a moon that was disrupted by tidal stresses when it passed within the planet's Roche limit. Most rings were thought to be unstable and to dissipate over the course of tens or hundreds of millions of years, but it now appears that Saturn's rings might be quite old, dating to the early days of the Solar System. Fainter planetary rings can form as a result of meteoroid impacts with moons orbiting around the planet or, in case of Saturn's E-ring, the ejecta of cryovolcanic material. The composition of ring particles varies; they may be silicate or icy dust. Larger rocks and boulders may also be present, and in 2007 tidal effects from eight 'moonlets' only a few hundred meters across were detected within Saturn's rings. The maximum size of a ring particle is determined by the specific strength of the material it is made of, its density, and the tidal force at its altitude. The tidal force is proportional to the average density inside the radius of the ring, or to the mass of the planet divided by the radius of the ring cubed. It is also inversely proportional to the square of the orbital period of the ring. Sometimes rings will have "shepherd" moons, small moons that orbit near the inner or outer edges of rings or within gaps in the rings. The gravity of shepherd moons serves to maintain a sharply defined edge to the ring; material that drifts closer to the shepherd moon's orbit is either deflected back into the body of the ring, ejected from the system, or accreted onto the moon itself. It is also predicted that Phobos, a moon of Mars, will break up and form into a planetary ring in about 50 million years. Its low orbit, with an orbital period that is shorter than a Martian day, is decaying due to tidal deceleration.


Jupiter

Jupiter's ring system was the third to be discovered, when it was first observed by the ''Voyager 1'' probe in 1979, and was observed more thoroughly by the ''Galileo'' orbiter in the 1990s. Its four main parts are a faint thick torus known as the "halo"; a thin, relatively bright main ring; and two wide, faint "gossamer rings". The system consists mostly of dust.


Saturn

Saturn's rings are the most extensive ring system of any planet in the Solar System, and thus have been known to exist for quite some time. Galileo Galilei first observed them in 1610, but they were not accurately described as a disk around Saturn until
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
did so in 1655. The rings are not a series of tiny ringlets as many think, but are more of a disk with varying density. They consist mostly of water ice and trace amounts of rock, and the particles range in size from micrometers to meters.


Uranus

Uranus's ring system lies between the level of complexity of Saturn's vast system and the simpler systems around Jupiter and Neptune. They were discovered in 1977 by
James L. Elliot James Ludlow Elliot (June 17, 1943 – March 3, 2011) was an American astronomer and scientist who, as part of a team, discovered the rings around the planet Uranus. Elliot was also part of a team that observed global warming on Triton, the la ...
, Edward W. Dunham, and Jessica Mink. In the time between then and 2005, observations by '' Voyager 2'' and the Hubble Space Telescope led to a total of 13 distinct rings being identified, most of which are opaque and only a few kilometers wide. They are dark and likely consist of water ice and some radiation-processed organics. The relative lack of dust is due to
aerodynamic drag In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding fl ...
from the extended
exosphere The exosphere ( grc, ἔξω "outside, external, beyond", grc, σφαῖρα "sphere") is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the densit ...
- corona of Uranus.


Neptune

The system around Neptune consists of five principal rings that, at their densest, are comparable to the low-density regions of Saturn's rings. However, they are faint and dusty, much more similar in structure to those of Jupiter. The very dark material that makes up the rings is likely organics processed by
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
, like in the rings of Uranus. 20 to 70 percent of the rings are dust, a relatively high proportion. Hints of the rings were seen for decades prior to their conclusive discovery by ''Voyager 2'' in 1989.


Rings systems of minor planets and moons

Reports in March 2008 suggested that Saturn's moon Rhea may have its own tenuous ring system, which would make it the only moon known to have a ring system. A later study published in 2010 revealed that imaging of Rhea by the ''Cassini'' spacecraft was inconsistent with the predicted properties of the rings, suggesting that some other mechanism is responsible for the magnetic effects that had led to the ring hypothesis. It had been theorized by some astronomers that Pluto might have a ring system. However, this possibility has been ruled out by ''
New Horizons ''New Horizons'' is an Interplanetary spaceflight, interplanetary space probe that was launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research ...
'', which would have detected any such ring system.


Chariklo

10199 Chariklo, a
centaur A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as being ...
, was the first minor planet discovered to have rings. It has
two rings 2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cul ...
, perhaps due to a collision that caused a chain of debris to orbit it. The rings were discovered when astronomers observed Chariklo passing in front of the star UCAC4 248-108672 on June 3, 2013 from seven locations in South America. While watching, they saw two dips in the star's apparent brightness just before and after the occultation. Because this event was observed at multiple locations, the conclusion that the dip in brightness was in fact due to rings is unanimously the leading hypothesis. The observations revealed what is likely a -wide ring system that is about 1,000 times closer than the Moon is to Earth. In addition, astronomers suspect there could be a moon orbiting amidst the ring debris. If these rings are the leftovers of a collision as astronomers suspect, this would give fodder to the idea that moons (such as the Moon) form through collisions of smaller bits of material. Chariklo's rings have not been officially named, but the discoverers have nicknamed them Oiapoque and Chuí, after two rivers near the northern and southern ends of Brazil.


Chiron

A second centaur,
2060 Chiron 2060 Chiron is a small Solar System body in the outer Solar System, orbiting the Sun between Saturn and Uranus. Discovered in 1977 by Charles Kowal, it was the first-identified member of a new class of objects now known as centaurs—bodies orb ...
, is also suspected to have a pair of rings. Based on stellar-occultation data that were initially interpreted as resulting from jets associated with Chiron's comet-like activity, the rings are proposed to be 324 (± 10) km in radius. Their changing appearance at different viewing angles can explain the long-term variation in Chiron's brightness over time. Ring systems may form around centaurs when they are tidally disrupted in a close encounter (within 0.4 to 0.8 times the Roche limit) with a giant planet. (By definition, a centaur is a minor planet whose orbit crosses the orbit(s) of one or more giant planets.) For a differentiated body approaching a giant planet at an initial relative velocity of 3−6 km/s with an initial rotational period of 8 hours, a ring mass of 0.1%−10% of the centaur's mass is predicted. Ring formation from an undifferentiated body is less likely. The rings would be composed mostly or entirely of material from the parent body's icy mantle. After forming, the ring would spread laterally, leading to satellite formation from whatever portion of it spreads beyond the centaur's Roche Limit. Satellites could also form directly from the disrupted icy mantle. This formation mechanism predicts that roughly 10% of centaurs will have experienced potentially ring-forming encounters with giant planets.


Haumea

A ring around Haumea, a dwarf planet and resonant Kuiper belt member, was revealed by a stellar occultation observed on 21 January 2017. This makes it the first trans-Neptunian object found to have a ring system. The ring has a radius of about 2,287 km, a width of ≈70 km and an opacity of 0.5. The ring plane coincides with Haumea's equator and the orbit of its larger, outer moon Hi’iaka (which has a semimajor axis of ≈25,657 km). The ring is close to the 3:1 resonance with Haumea's rotation, which is located at a radius of 2,285 ± 8 km. It is well within Haumea's Roche limit, which would lie at a radius of about 4,400 km if Haumea were spherical (being nonspherical pushes the limit out farther).


Quaoar

On the 27th of August 2021, three amateur astronomers from Queensland, Australia, independently discovered an inhomogeneous ring around Quaoar during a routine stellar occultation event. The data suggests a narrow ring about 10 km wide and by implication is indirect evidence of shepherd moons. The fact that only single occultations have been observed from 3 out of the observing 7 sites suggest it's a ring arc akin to those discovered in the 80s surrounding Neptune, but even those have non-opaque matter in the remainder of the orbit.


Rings around exoplanets

Because all giant planets of the Solar System have rings, the existence of
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s with rings is plausible. Although particles of ice, the material that is predominant in the rings of Saturn, can only exist around planets beyond the frost line, within this line rings consisting of rocky material can be stable in the long term. Such ring systems can be detected for planets observed by the transit method by additional reduction of the light of the central star if their opacity is sufficient. As of 2020, one candidate extrasolar ring system has been found by this method, around HIP 41378 f.
Fomalhaut b Fomalhaut b, formally named Dagon (), is a directly imaged extrasolar object and former candidate planet observed near the A-type main-sequence star Fomalhaut, approximately 25 light-years away in the constellation of Piscis Austrinus. The obje ...
was found to be large and unclearly defined when detected in 2008. This was hypothesized to either be due to a cloud of dust attracted from the dust disc of the star, or a possible ring system, though in 2020 Fomalhaut b itself was determined to very likely be an expanding debris cloud from a collision of asteroids rather than a planet. Similarly,
Proxima Centauri c Proxima Centauri c (also called Proxima c or Alpha Centauri Cc) is a controversial exoplanet candidate claimed to be orbiting the red dwarf star Proxima Centauri, which is the closest star to the Sun and part of a triple star s ...
has been observed to be far brighter than expected for its low mass of 7 Earth masses, which may be attributed to a ring system of about 5 . A sequence of occultations of the star 1SWASP J140747.93-394542.6 observed in 2007 over 56 days was interpreted as a transit of a ring system of a (not directly observed) substellar companion dubbed "J1407b". This ring system is attributed a radius of about 90 million km (about 200 times that of Saturn's rings). In press releases, the term "super Saturn" was used. However, the age of this stellar system is only about 16 million years, which suggests that this structure, if real, is more likely a circumplanetary disk rather than a stable ring system in an evolved
planetary system A planetary system is a set of gravitationally In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interacti ...
. The ring was observed to have a 0.0267 AU-wide gap at a radial distance of 0.4 AU. Simulations suggest that this gap is more likely the result of an embedded moon than resonance effects of an external moon(s).


Visual comparison


See also

*
Shepherd moon A shepherd moon (also herder moon or watcher moon) is a small natural satellite that clears a gap in planetary-ring material or keeps particles within a ring contained. The name is a result of the fact they limit the "herd" of the ring particle ...
* Circumplanetary disk * Circumstellar disk *
Accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other fo ...
* Lists of astronomical objects


References


External links


USGS/IAU Ring and Ring Gap Nomenclature

Everything a Curious Mind Should Know About Planetary Ring Systems with Dr Mark ShowalterBridging the Gaps: A Portal for Curious Minds

Physical Chemistry of Evolution of Planetary Systems
* Gladyshev G. P. ''Thermodynamics and Macrokinetics of Natural Hierarchical Processes'', p. 217. Nauka, Moscow, 1988 (in Russian). {{Authority control Celestial mechanics Articles containing video clips