HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, summation is the
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an
operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Ma ...
denoted "+" is defined. Summations of infinite sequences are called series. They involve the concept of
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of is denoted , and results in 9, that is, . Because addition is
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
and commutative, there is no need of parentheses, and the result is the same irrespective of the order of the summands. Summation of a sequence of only one element results in this element itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0. Very often, the elements of a sequence are defined, through a regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be represented with most summands replaced by ellipses. For example, summation of the first 100 natural numbers may be written as . Otherwise, summation is denoted by using Σ notation, where \sum is an enlarged capital Greek letter
sigma Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
. For example, the sum of the first natural numbers can be denoted as \sum_^n i. For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result. For example, :\sum_^n i = \frac. Although such formulas do not always exist, many summation formulas have been discovered—with some of the most common and elementary ones being listed in the remainder of this article.


Notation


Capital-sigma notation

Mathematical notation uses a symbol that compactly represents summation of many similar terms: the ''summation symbol'', \sum, an enlarged form of the upright capital Greek letter
sigma Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
. This is defined as :\sum_^n a_i = a_m + a_ + a_ + \cdots + a_ + a_n where is the index of summation; is an indexed variable representing each term of the sum; is the lower bound of summation, and is the upper bound of summation. The "" under the summation symbol means that the index starts out equal to . The index, , is incremented by one for each successive term, stopping when . This is read as "sum of , from to ". Here is an example showing the summation of squares: :\sum_^6 i^2 = 3^2+4^2+5^2+6^2 = 86. In general, while any variable can be used as the index of summation (provided that no ambiguity is incurred), some of the most common ones include letters such as i, j, k, and n; the latter is also often used for the upper bound of a summation. Alternatively, index and bounds of summation are sometimes omitted from the definition of summation if the context is sufficiently clear. This applies particularly when the index runs from 1 to ''n''. For example, one might write that: :\sum a_i^2 = \sum_^n a_i^2. Generalizations of this notation are often used, in which an arbitrary logical condition is supplied, and the sum is intended to be taken over all values satisfying the condition. For example: :\sum_ f(k) is an alternative notation for \sum_^ f(k), the sum of f(k) over all ( integers) k in the specified range. Similarly, :\sum_ f(x) is the sum of f(x) over all elements x in the set S, and :\sum_\;\mu(d) is the sum of \mu(d) over all positive integers d dividing n. There are also ways to generalize the use of many sigma signs. For example, :\sum_ is the same as :\sum_\sum_. A similar notation is used for the product of a sequence, where \prod, an enlarged form of the Greek capital letter pi, is used instead of \sum.


Special cases

It is possible to sum fewer than 2 numbers: * If the summation has one summand x, then the evaluated sum is x. * If the summation has no summands, then the evaluated sum is zero, because zero is the
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), ...
for addition. This is known as the '' empty sum''. These degenerate cases are usually only used when the summation notation gives a degenerate result in a special case. For example, if n=m in the definition above, then there is only one term in the sum; if n=m-1, then there is none.


Formal definition

Summation may be defined recursively as follows: :\sum_^b g(i)=0, for ''b'' < ''a''; : :\sum_^b g(i)=g(b)+\sum_^ g(i), for ''b'' ≥ ''a''.


Measure theory notation

In the notation of
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
and
integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
theory, a sum can be expressed as a
definite integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with di ...
, :\sum_^b f(k) = \int_ f\,d\mu where
, b The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
/math> is the
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the integers from a to b, and where \mu is the counting measure.


Calculus of finite differences

Given a function that is defined over the integers in the interval , the following equation holds: :f(n)-f(m)= \sum_^ (f(i+1)-f(i)). This is the analogue of the fundamental theorem of calculus in
calculus of finite differences A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the ...
, which states that: :f(n)-f(m)=\int_m^n f'(x)\,dx, where :f'(x)=\lim_ \frac is the derivative of . An example of application of the above equation is the following: :n^k=\sum_^ \left((i+1)^k-i^k\right). Using binomial theorem, this may be rewritten as: :n^k=\sum_^ \left(\sum_^ \binom i^j\right). The above formula is more commonly used for inverting of the difference operator \Delta, defined by: :\Delta(f)(n)=f(n+1)-f(n), where is a function defined on the nonnegative integers. Thus, given such a function , the problem is to compute the antidifference of , a function F=\Delta^f such that \Delta F=f. That is, F(n+1)-F(n)=f(n). This function is defined up to the addition of a constant, and may be chosen as''Handbook of Discrete and Combinatorial Mathematics'', Kenneth H. Rosen, John G. Michaels, CRC Press, 1999, . :F(n)=\sum_^ f(i). There is not always a closed-form expression for such a summation, but
Faulhaber's formula In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the ''p''-th powers of the first ''n'' positive integers :\sum_^n k^p = 1^p + 2^p + 3^p + \cdots + n^p as a (''p''&nb ...
provides a closed form in the case where f(n)=n^k and, by linearity, for every
polynomial function In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtrac ...
of .


Approximation by definite integrals

Many such approximations can be obtained by the following connection between sums and integrals, which holds for any increasing function ''f'': :\int_^ f(s)\ ds \le \sum_^ f(i) \le \int_^ f(s)\ ds. and for any
decreasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of orde ...
function ''f'': :\int_^ f(s)\ ds \le \sum_^ f(i) \le \int_^ f(s)\ ds. For more general approximations, see the
Euler–Maclaurin formula In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using ...
. For summations in which the summand is given (or can be interpolated) by an integrable function of the index, the summation can be interpreted as a Riemann sum occurring in the definition of the corresponding definite integral. One can therefore expect that for instance :\frac\sum_^ f\left(a+i\fracn\right) \approx \int_a^b f(x)\ dx, since the right-hand side is by definition the limit for n\to\infty of the left-hand side. However, for a given summation ''n'' is fixed, and little can be said about the error in the above approximation without additional assumptions about ''f'': it is clear that for wildly oscillating functions the Riemann sum can be arbitrarily far from the Riemann integral.


Identities

The formulae below involve finite sums; for infinite summations or finite summations of expressions involving trigonometric functions or other transcendental functions, see list of mathematical series.


General identities

: \sum_^t C\cdot f(n) = C\cdot \sum_^t f(n) \quad ( distributivity) : \sum_^t f(n) \pm \sum_^ g(n) = \sum_^t \left(f(n) \pm g(n)\right)\quad (
commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
and associativity) : \sum_^t f(n) = \sum_^ f(n-p)\quad (index shift) : \sum_ f(n) = \sum_ f(\sigma(m)), \quad for a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
from a finite set onto a set (index change); this generalizes the preceding formula. : \sum_^t f(n) =\sum_^j f(n) + \sum_^t f(n)\quad (splitting a sum, using associativity) : \sum_^f(n)=\sum_^f(n)-\sum_^f(n)\quad (a variant of the preceding formula) : \sum_^t f(n) = \sum_^ f(t-n)\quad (the sum from the first term up to the last is equal to the sum from the last down to the first) : \sum_^t f(n) = \sum_^ f(t-n)\quad (a particular case of the formula above) : \sum_^\sum_^ a_ = \sum_^\sum_^ a_\quad (commutativity and associativity, again) : \sum_ a_ = \sum_^n\sum_^i a_ = \sum_^n\sum_^n a_ = \sum_^\sum_^ a_\quad (another application of commutativity and associativity) : \sum_^ f(n) = \sum_^t f(2n) + \sum_^t f(2n+1)\quad (splitting a sum into its
odd Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric. Odd may also refer to: Acronym * ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
and
even Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname) * Even (people), an ethnic group from Siberia and Russian Far East ** Even language, a language spoken by the Evens * Odd and Even, a solitaire game w ...
parts, for even indexes) : \sum_^ f(n) = \sum_^t f(2n) + \sum_^t f(2n-1)\quad (splitting a sum into its odd and even parts, for odd indexes) :\left(\sum_^ a_i\right) \left(\sum_^ b_j\right)=\sum_^n \sum_^n a_ib_j \quad ( distributivity) : \sum_^m\sum_^n = \left(\sum_^m a_i\right) \left( \sum_^n c_j \right)\quad (distributivity allows factorization) : \sum_^t \log_b f(n) = \log_b \prod_^t f(n)\quad (the logarithm of a product is the sum of the logarithms of the factors) : C^ = \prod_^t C^\quad (the exponential of a sum is the product of the exponential of the summands)


Powers and logarithm of arithmetic progressions

: \sum_^n c = nc\quad for every that does not depend on : \sum_^n i = \sum_^n i = \frac\qquad (Sum of the simplest arithmetic progression, consisting of the first ''n'' natural numbers.) : \sum_^n (2i-1) = n^2\qquad (Sum of first odd natural numbers) : \sum_^ 2i = n(n+1)\qquad (Sum of first even natural numbers) : \sum_^ \log i = \log n!\qquad (A sum of logarithms is the logarithm of the product) : \sum_^n i^2 = \sum_^n i^2 = \frac = \frac + \frac + \frac\qquad (Sum of the first squares, see
square pyramidal number In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broa ...
.) : \sum_^n i^3 = \left(\sum_^n i \right)^2 = \left(\frac\right)^2 = \frac + \frac + \frac\qquad (
Nicomachus's theorem In number theory, the sum of the first cubes is the square of the th triangular number. That is, :1^3+2^3+3^3+\cdots+n^3 = \left(1+2+3+\cdots+n\right)^2. The same equation may be written more compactly using the mathematical notation for summa ...
) More generally, one has
Faulhaber's formula In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the ''p''-th powers of the first ''n'' positive integers :\sum_^n k^p = 1^p + 2^p + 3^p + \cdots + n^p as a (''p''&nb ...
for p>1 : \sum_^n k^ = \frac + \fracn^p + \sum_^p \binom p k \frac\,n^, where B_k denotes a Bernoulli number, and \binom p k is a
binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
.


Summation index in exponents

In the following summations, is assumed to be different from 1. : \sum_^ a^i = \frac (sum of a geometric progression) : \sum_^ \frac = 2-\frac (special case for ) : \sum_^ i a^i =\frac ( times the derivative with respect to of the geometric progression) : \begin \sum_^ \left(b + i d\right) a^i &= b \sum_^ a^i + d \sum_^ i a^i\\ & = b \left(\frac\right) + d \left(\frac\right)\\ & = \frac+\frac \end :::(sum of an
arithmetico–geometric sequence In mathematics, arithmetico-geometric sequence is the result of term-by-term multiplication of a geometric progression with the corresponding terms of an arithmetic progression. Put plainly, the ''n''th term of an arithmetico-geometric sequence ...
)


Binomial coefficients and factorials

There exist very many summation identities involving binomial coefficients (a whole chapter of '' Concrete Mathematics'' is devoted to just the basic techniques). Some of the most basic ones are the following.


Involving the binomial theorem

: \sum_^n a^ b^i=(a + b)^n, the binomial theorem : \sum_^n = 2^n, the special case where : \sum_^n p^i (1-p)^=1, the special case where , which, for 0 \le p \le 1, expresses the sum of the
binomial distribution In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no quest ...
: \sum_^ i = n(2^), the value at of the derivative with respect to of the binomial theorem : \sum_^n \frac = \frac, the value at of the antiderivative with respect to of the binomial theorem


Involving permutation numbers

In the following summations, _P_ is the number of -permutations of . : \sum_^ _P_ = _P_(2^) : \sum_^n _P_ = \sum_^n \prod_^k (i+j) = \frac : \sum_^ i!\cdot = \sum_^ _P_ = \lfloor n! \cdot e \rfloor, \quad n \in \mathbb^+, where and \lfloor x\rfloor denotes the floor function.


Others

: \sum_^ \binom = \binom : \sum_^ = : \sum_^n i\cdot i! = (n+1)! - 1 : \sum_^n = :\sum_^n ^2 = :\sum_^n \frac = \frac


Harmonic numbers

: \sum_^n \frac = H_n (that is the th
harmonic number In mathematics, the -th harmonic number is the sum of the reciprocals of the first natural numbers: H_n= 1+\frac+\frac+\cdots+\frac =\sum_^n \frac. Starting from , the sequence of harmonic numbers begins: 1, \frac, \frac, \frac, \frac, \dot ...
) : \sum_^n \frac = H^k_n (that is a
generalized harmonic number In mathematics, the -th harmonic number is the sum of the reciprocals of the first natural numbers: H_n= 1+\frac+\frac+\cdots+\frac =\sum_^n \frac. Starting from , the sequence of harmonic numbers begins: 1, \frac, \frac, \frac, \frac, \dot ...
)


Growth rates

The following are useful
approximation An approximation is anything that is intentionally similar but not exactly equality (mathematics), equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very ...
s (using theta notation): : \sum_^n i^c \in \Theta(n^) for real ''c'' greater than −1 : : \sum_^n \frac \in \Theta(\log_e n) (See
Harmonic number In mathematics, the -th harmonic number is the sum of the reciprocals of the first natural numbers: H_n= 1+\frac+\frac+\cdots+\frac =\sum_^n \frac. Starting from , the sequence of harmonic numbers begins: 1, \frac, \frac, \frac, \frac, \dot ...
) : : \sum_^n c^i \in \Theta(c^n) for real ''c'' greater than 1 : : \sum_^n \log(i)^c \in \Theta(n \cdot \log(n)^) for non-negative real ''c'' : : \sum_^n \log(i)^c \cdot i^d \in \Theta(n^ \cdot \log(n)^) for non-negative real ''c'', ''d'' : : \sum_^n \log(i)^c \cdot i^d \cdot b^i \in \Theta (n^d \cdot \log(n)^c \cdot b^n) for non-negative real ''b'' > 1, ''c'', ''d''


History

* In 1675, Gottfried Wilhelm Leibniz, in a letter to Henry Oldenburg, suggests the symbol ∫ to mark the sum of differentials ( Latin: ''calculus summatorius''), hence the S-shape. The renaming of this symbol to '' integral'' arose later in exchanges with Johann Bernoulli. * In 1755, the summation symbol Σ is attested in Leonhard Euler's '' Institutiones calculi differentialis''. Euler uses the symbol in expressions like: : \Sigma \ (2 wx + w^2) = x^2 * In 1772, usage of Σ and Σn is attested by
Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaFourier and
C. G. J. Jacobi Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasiona ...
. Fourier's use includes lower and upper bounds, for example: : \sum_^e^ \ldots


See also

*
Capital-pi notation Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additio ...
*
Einstein notation In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
*
Iverson bracket In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement . It maps any statement to a function of the free variables in that statement. ...
* Iterated binary operation *
Kahan summation algorithm In numerical analysis, the Kahan summation algorithm, also known as compensated summation, significantly reduces the numerical error in the total obtained by adding a sequence of finite-precision floating-point numbers, compared to the obvious appro ...
* Product (mathematics) * Summation by parts *
Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
the summation single glyph (U+2211 ''N-ARY SUMMATION'') * the paired glyph's beginning (U+23B2 ''SUMMATION TOP'') * the paired glyph's end (U+23B3 ''SUMMATION BOTTOM'')


Notes


References


Bibliography

*


External links

* {{Authority control Mathematical notation Addition