In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a (real) interval is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
of
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other examples of intervals are the set of numbers such that , the set of all real numbers
, the set of nonnegative real numbers, the set of positive real numbers, the
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
, and any
singleton
Singleton may refer to:
Sciences, technology Mathematics
* Singleton (mathematics), a set with exactly one element
* Singleton field, used in conformal field theory Computing
* Singleton pattern, a design pattern that allows only one instance o ...
(set of one element).
Real intervals play an important role in the theory of
integration
Integration may refer to:
Biology
*Multisensory integration
*Path integration
* Pre-integration complex, viral genetic material used to insert a viral genome into a host genome
*DNA integration, by means of site-specific recombinase technology, ...
, because they are the simplest sets whose "length" (or "measure" or "size") is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the
Borel measure
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below.
F ...
and eventually to the
Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
.
Intervals are central to
interval arithmetic
Interval arithmetic (also known as interval mathematics, interval analysis, or interval computation) is a mathematical technique used to put bounds on rounding errors and measurement errors in mathematical computation. Numerical methods using ...
, a general
numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematical approximations, and
arithmetic roundoff.
Intervals are likewise defined on an arbitrary
totally ordered
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( reflexive) ...
set, such as
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language o ...
or
rational numbers
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rationa ...
. The notation of integer intervals is considered
in the special section below.
Terminology
An does not include its endpoints, and is indicated with parentheses.
For example, means greater than and less than . This means .
This interval can also be denoted by , see below.
A is an interval which includes all its limit points, and is denoted with square brackets.
For example, means greater than or equal to and less than or equal to .
A includes only one of its endpoints, and is denoted by mixing the notations for open and closed intervals.
For example, means greater than and less than or equal to , while means greater than or equal to and less than .
A is any
set consisting of a single real number (i.e., an interval of the form ).
Some authors include the empty set in this definition. A real interval that is neither empty nor degenerate is said to be proper, and has infinitely many elements.
An interval is said to be left-bounded or right-bounded, if there is some real number that is, respectively, smaller than or larger than all its elements. An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite intervals.
Bounded intervals are
bounded set
:''"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary.
In mathematical analysis and related areas of mat ...
s, in the sense that their
diameter
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for ...
(which is equal to the
absolute difference
The absolute difference of two real numbers x and y is given by , x-y, , the absolute value of their difference. It describes the distance on the real line between the points corresponding to x and y. It is a special case of the Lp distance for a ...
between the endpoints) is finite. The diameter may be called the length, width, measure, range, or size of the interval. The size of unbounded intervals is usually defined as , and the size of the empty interval may be defined as (or left undefined).
The centre (
midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dimens ...
) of a bounded interval with endpoints and is , and its radius is the half-length . These concepts are undefined for empty or unbounded intervals.
An interval is said to be left-open if and only if it contains no
minimum
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
(an element that is smaller than all other elements); right-open if it contains no
maximum
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
; and open if it contains neither. The interval , for example, is left-closed and right-open. The empty set and the set of all reals are both open and closed intervals, while the set of non-negative reals, is a closed interval that is right-open but not left-open. The open intervals are
open set
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
s of the real line in its standard
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, and form a
base of the open sets.
An interval is said to be left-closed if it has a minimum element or is left-unbounded, right-closed if it has a maximum or is right unbounded; it is simply closed if it is both left-closed and right closed. So, the closed intervals coincide with the
closed set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
s in that topology.
The interior of an interval is the largest open interval that is contained in ; it is also the set of points in which are not endpoints of . The closure of is the smallest closed interval that contains ; which is also the set augmented with its finite endpoints.
For any set of real numbers, the interval enclosure or interval span of is the unique interval that contains , and does not properly contain any other interval that also contains .
An interval is subinterval of interval if is a
subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of . An interval is a proper subinterval of if is a
proper subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of .
Note on conflicting terminology
The terms segment and interval have been employed in the literature in two essentially opposite ways, resulting in ambiguity when these terms are used. The ''Encyclopedia of Mathematics'' defines ''interval'' (without a qualifier) to exclude both endpoints (i.e., open interval) and ''segment'' to include both endpoints (i.e., closed interval), while Rudin's ''Principles of Mathematical Analysis'' calls sets of the form
'a'', ''b''''intervals'' and sets of the form (''a'', ''b'') ''segments'' throughout. These terms tend to appear in older works; modern texts increasingly favor the term ''interval'' (qualified by ''open'', ''closed'', or ''half-open''), regardless of whether endpoints are included.
Notations for intervals
The interval of numbers between and , including and , is often denoted . The two numbers are called the ''endpoints'' of the interval. In countries where numbers are written with a
decimal comma
A decimal separator is a symbol used to separate the integer part from the fractional part of a number written in decimal form (e.g., "." in 12.45). Different countries officially designate different symbols for use as the separator. The cho ...
, a
semicolon
The semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought. When a ...
may be used as a separator to avoid ambiguity.
Including or excluding endpoints
To indicate that one of the endpoints is to be excluded from the set, the corresponding square bracket can be either replaced with a parenthesis, or reversed. Both notations are described in
International standard
international standard is a technical standard developed by one or more international standards organizations. International standards are available for consideration and use worldwide. The most prominent such organization is the International Or ...
ISO 31-11
ISO 31-11:1992 was the part of international standard ISO 31 that defines ''mathematical signs and symbols for use in physical sciences and technology''. It was superseded in 2009 by ISO 80000-2:2009 and subsequently revised in 2019 as ISO-800 ...
. Thus, in
set builder notation
In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy.
Defining ...
,
:
Each interval , , and represents the
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
, whereas denotes the singleton set . When , all four notations are usually taken to represent the empty set.
Both notations may overlap with other uses of parentheses and brackets in mathematics. For instance, the notation is often used to denote an
ordered pair
In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
in set theory, the
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
of a
point
Point or points may refer to:
Places
* Point, Lewis, a peninsula in the Outer Hebrides, Scotland
* Point, Texas, a city in Rains County, Texas, United States
* Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland
* Point ...
or
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
in
analytic geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
Analytic geometry is used in physics and engineerin ...
and
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrices.
...
, or (sometimes) a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
in
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
. That is why
Bourbaki introduced the notation to denote the open interval. The notation too is occasionally used for ordered pairs, especially in
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
.
Some authors such as Yves Tillé use to denote the complement of the interval ; namely, the set of all real numbers that are either less than or equal to , or greater than or equal to .
Infinite endpoints
In some contexts, an interval may be defined as a subset of the
extended real numbers
In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra on ...
, the set of all real numbers augmented with and .
In this interpretation, the notations , , , and are all meaningful and distinct. In particular, denotes the set of all ordinary real numbers, while denotes the extended reals.
Even in the context of the ordinary reals, one may use an
infinite
Infinite may refer to:
Mathematics
*Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
* Infinite (group), a South Korean boy band
*''Infinite'' (EP), debut EP of American m ...
endpoint to indicate that there is no bound in that direction. For example, is the set of
positive real numbers
In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used fo ...
, also written as
. The context affects some of the above definitions and terminology. For instance, the interval =
is closed in the realm of ordinary reals, but not in the realm of the extended reals.
Integer intervals
When and are
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s, the notation ⟦''a, b''⟧, or or or just , is sometimes used to indicate the interval of all ''integers'' between and included. The notation is used in some
programming language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.
The description of a programming ...
s; in
Pascal
Pascal, Pascal's or PASCAL may refer to:
People and fictional characters
* Pascal (given name), including a list of people with the name
* Pascal (surname), including a list of people and fictional characters with the name
** Blaise Pascal, Fren ...
, for example, it is used to formally define a subrange type, most frequently used to specify lower and upper bounds of valid
indices of an
array
An array is a systematic arrangement of similar objects, usually in rows and columns.
Things called an array include:
{{TOC right
Music
* In twelve-tone and serial composition, the presentation of simultaneous twelve-tone sets such that the ...
.
An integer interval that has a finite lower or upper endpoint always includes that endpoint. Therefore, the exclusion of endpoints can be explicitly denoted by writing , , or . Alternate-bracket notations like or are rarely used for integer intervals.
Classification of intervals
The intervals of real numbers can be classified into the eleven different types listed below, where and are real numbers, and
:
* Empty:
* Degenerate:
* Proper and bounded:
** Open:
** Closed:
** Left-closed, right-open:
* Left-bounded and right-unbounded:
** Left-open:
(a,+\infty) = \
** Left-closed:
* Left-unbounded and right-bounded:
** Right-open: (-\infty,b) = \
** Right-closed: (-\infty,b">,+\infty) = \
* Left-unbounded and right-bounded:
** Right-open: (-\infty,b) = \
** Right-closed: (-\infty,b= \
* Unbounded at both ends (simultaneously open and closed):
(-\infty,+\infty) = \R:
Properties of intervals
The intervals are precisely the
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
subsets of
\R. It follows that the image of an interval by any
continuous function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
is also an interval. This is one formulation of the
intermediate value theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval.
This has two import ...
.
The intervals are also the
convex subset
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
s of
\R. The interval enclosure of a subset
X\subseteq \R is also the
convex hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of
X.
The intersection of any collection of intervals is always an interval. The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other – e.g.,
(a,b) \cup ,c= (a,c].
If
\R is viewed as a
metric space
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
, its
open ball
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defin ...
s are the open bounded sets , and its
closed ball
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defi ...
s are the closed bounded sets .
Any element of an interval defines a partition of into three disjoint intervals
1,
2,
3: respectively, the elements of that are less than , the singleton
,x= \, and the elements that are greater than . The parts
1 and
3 are both non-empty (and have non-empty interiors), if and only if is in the interior of . This is an interval version of the
trichotomy principle.
Dyadic intervals
A ''dyadic interval'' is a bounded real interval whose endpoints are
\frac and
\frac, where
j and
n are integers. Depending on the context, either endpoint may or may not be included in the interval.
Dyadic intervals have the following properties:
* The length of a dyadic interval is always an integer power of two.
* Each dyadic interval is contained in exactly one dyadic interval of twice the length.
* Each dyadic interval is spanned by two dyadic intervals of half the length.
* If two open dyadic intervals overlap, then one of them is a subset of the other.
The dyadic intervals consequently have a structure that reflects that of an infinite
binary tree
In computer science, a binary tree is a k-ary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (non-empty) binary t ...
.
Dyadic intervals are relevant to several areas of numerical analysis, including
adaptive mesh refinement
In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions ...
,
multigrid methods In numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhi ...
and
wavelet analysis
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the num ...
. Another way to represent such a structure is
p-adic analysis
In mathematics, ''p''-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of ''p''-adic numbers.
The theory of complex-valued numerical functions on the ''p''-adic numbers is part of the theory of lo ...
(for ).
Generalizations
Multi-dimensional intervals
In many contexts, an
n-dimensional interval is defined as a subset of
\R^n that is the
Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ti ...
of
n intervals,
I = I_1\times I_2 \times \cdots \times I_n, one on each
coordinate
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
axis.
For
n=2, this can be thought of as region bounded by a
square
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adj ...
or
rectangle
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
, whose sides are parallel to the coordinate axes, depending on whether the width of the intervals are the same or not; likewise, for
n=3, this can be thought of as a region bounded by an axis-aligned
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
or a
rectangular cuboid
In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cub ...
.
In higher dimensions, the Cartesian product of
n intervals is bounded by an
n-dimensional
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
or
hyperrectangle
In geometry, an orthotopeCoxeter, 1973 (also called a hyperrectangle or a box) is the generalization of a rectangle to higher dimensions.
A necessary and sufficient condition is that it is congruent to the Cartesian product of intervals. If all of ...
.
A facet of such an interval
I is the result of replacing any non-degenerate interval factor
I_k by a degenerate interval consisting of a finite endpoint of
I_k. The faces of
I comprise
I itself and all faces of its facets. The corners of
I are the faces that consist of a single point of
\R^n.
Complex intervals
Intervals of
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s can be defined as regions of the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
, either
rectangular
In Euclidean geometry, Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a par ...
or
circular
Circular may refer to:
* The shape of a circle
* ''Circular'' (album), a 2006 album by Spanish singer Vega
* Circular letter (disambiguation)
** Flyer (pamphlet), a form of advertisement
* Circular reasoning, a type of logical fallacy
* Circula ...
.
Topological algebra
Intervals can be associated with points of the plane, and hence regions of intervals can be associated with
region
In geography, regions, otherwise referred to as zones, lands or territories, are areas that are broadly divided by physical characteristics (physical geography), human impact characteristics (human geography), and the interaction of humanity and t ...
s of the plane. Generally, an interval in mathematics corresponds to an ordered pair (''x,y'') taken from the
direct product
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
R × R of real numbers with itself, where it is often assumed that ''y'' > ''x''. For purposes of
mathematical structure
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
, this restriction is discarded, and "reversed intervals" where ''y'' − ''x'' < 0 are allowed. Then, the collection of all intervals
'x,y''can be identified with the
topological ring In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in mode ...
formed by the
direct sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
of R with itself, where addition and multiplication are defined component-wise.
The direct sum algebra
( R \oplus R, +, \times) has two
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
s, and . The
identity element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
of this algebra is the condensed interval
,1 If interval
'x,y''is not in one of the ideals, then it has
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rat ...
/''x'', 1/''y'' Endowed with the usual
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, the algebra of intervals forms a
topological ring In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in mode ...
. The
group of units
In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the element is unique for this ...
of this ring consists of four
quadrants determined by the axes, or ideals in this case. The
identity component
In mathematics, specifically group theory, the identity component of a group ''G'' refers to several closely related notions of the largest connected subgroup of ''G'' containing the identity element.
In point set topology, the identity componen ...
of this group is quadrant I.
Every interval can be considered a symmetric interval around its
midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dimens ...
. In a reconfiguration published in 1956 by M Warmus, the axis of "balanced intervals"
'x'', −''x''is used along with the axis of intervals
'x,x''that reduce to a point. Instead of the direct sum
R \oplus R, the ring of intervals has been identified
D. H. Lehmer
Derrick Henry "Dick" Lehmer (February 23, 1905 – May 22, 1991), almost always cited as D.H. Lehmer, was an American mathematician significant to the development of computational number theory. Lehmer refined Édouard Lucas' work in the 1930s and ...
(1956
Review of "Calculus of Approximations"
from Mathematical Reviews with the
split-complex number
In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
plane by M. Warmus and
D. H. Lehmer
Derrick Henry "Dick" Lehmer (February 23, 1905 – May 22, 1991), almost always cited as D.H. Lehmer, was an American mathematician significant to the development of computational number theory. Lehmer refined Édouard Lucas' work in the 1930s and ...
through the identification
: ''z'' = (''x'' + ''y'')/2 + j (''x'' − ''y'')/2.
This linear mapping of the plane, which amounts of a
ring isomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is:
:addition preservi ...
, provides the plane with a multiplicative structure having some analogies to ordinary complex arithmetic, such as
polar decomposition
In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is an orthogonal matrix and P is a positive semi-definite symmetric matrix (U is a unitary matrix and P is a positive semi ...
.
See also
*
Arc (geometry)
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that a ...
*
Inequality
Inequality may refer to:
Economics
* Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy
* Economic inequality, difference in economic well-being between population groups
* ...
*
Interval graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line,
with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals.
Int ...
*
Interval finite element
In numerical analysis, the interval finite element method (interval FEM) is a finite element method that uses interval parameters. Interval FEM can be applied in situations where it is not possible to get reliable probabilistic characteristics of ...
*
Interval (statistics)
In statistics, interval estimation is the use of sample data to estimate an '' interval'' of plausible values of a parameter of interest. This is in contrast to point estimation, which gives a single value.
The most prevalent forms of interval es ...
*
Line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
*
Partition of an interval
In mathematics, a partition of an interval on the real line is a finite sequence of real numbers such that
:.
In other terms, a partition of a compact interval is a strictly increasing sequence of numbers (belonging to the interval itself) ...
*
Unit interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis, ...
References
Bibliography
* T. Sunaga
"Theory of interval algebra and its application to numerical analysis", In: Research Association of Applied Geometry (RAAG) Memoirs, Ggujutsu Bunken Fukuy-kai. Tokyo, Japan, 1958, Vol. 2, pp. 29–46 (547-564); reprinted in Japan Journal on Industrial and Applied Mathematics, 2009, Vol. 26, No. 2-3, pp. 126–143.
External links
* ''A Lucid Interval'' by Brian Hayes: A
American Scientist articleprovides an introduction.
Interval Notationby George Beck,
Wolfram Demonstrations Project
The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
.
*
{{DEFAULTSORT:Interval (Mathematics)
Sets of real numbers
Order theory
Topology