HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, (between-) study heterogeneity is a phenomenon that commonly occurs when attempting to undertake a
meta-analysis Meta-analysis is a method of synthesis of quantitative data from multiple independent studies addressing a common research question. An important part of this method involves computing a combined effect size across all of the studies. As such, th ...
. In a simplistic scenario, studies whose results are to be combined in the meta-analysis would all be undertaken in the same way and to the same experimental protocols. Differences between outcomes would only be due to
measurement error Observational error (or measurement error) is the difference between a measured value of a quantity and its unknown true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. Such errors are inherent in the measurement pr ...
(and studies would hence be ''
homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
''). Study heterogeneity denotes the variability in outcomes that goes beyond what would be expected (or could be explained) due to measurement error alone.


Introduction

Meta-analysis Meta-analysis is a method of synthesis of quantitative data from multiple independent studies addressing a common research question. An important part of this method involves computing a combined effect size across all of the studies. As such, th ...
is a method used to combine the results of different trials in order to obtain a quantitative synthesis. The size of individual clinical trials is often too small to detect treatment effects reliably. Meta-analysis increases the power of statistical analyses by pooling the results of all available trials. As one tries to use meta-analysis to estimate a combined effect from a group of similar studies, the effects found in the individual studies need to be similar enough that one can be confident that a combined estimate will be a meaningful description of the set of studies. However, the individual estimates of treatment effect will vary by chance; some variation is expected due to
observational error Observational error (or measurement error) is the difference between a measured value of a quantity and its unknown true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. Such errors are inherent in the measurement ...
. Any excess variation (whether it is apparent or detectable or not) is called (statistical) heterogeneity. The presence of some heterogeneity is not unusual, e.g., analogous effects are also commonly encountered even ''within'' studies, in
multicenter trial A multicenter research trial is a clinical trial that involves more than one independent medical institutions in enrolling and following trial participants. In multicenter trials the participant institutions follow a common treatment protocol and fo ...
s (between-''center'' heterogeneity). Reasons for the additional variability are usually differences in the studies themselves, the investigated populations, treatment schedules, endpoint definitions, or other circumstances ("clinical diversity"), or the way data were analyzed, what models were employed, or whether estimates have been adjusted in some way ("methodological diversity"). Different types of effect measures (e.g.,
odds ratio An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B ...
vs.
relative risk The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association bet ...
) may also be more or less susceptible to heterogeneity.


Modeling

In case the origin of heterogeneity can be identified and may be attributed to certain study features, the analysis may be
stratified Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
(by considering subgroups of studies, which would then hopefully be more homogeneous), or by extending the analysis to a meta-regression, accounting for (continuous or categorical)
moderator variable In statistics and regression analysis, moderation (also known as effect modification) occurs when the relationship between two variables depends on a third variable. The third variable is referred to as the moderator variable (or effect modifier) ...
s. Unfortunately, literature-based meta-analysis may often not allow for gathering data on all (potentially) relevant moderators. In addition, heterogeneity is usually accommodated by using a
random effects model In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are ...
, in which the heterogeneity then constitutes a variance component. The model represents the lack of knowledge about why treatment effects may differ by treating the (potential) differences as unknowns. The centre of this symmetric distribution describes the average of the effects, while its width describes the degree of heterogeneity. The obvious and conventional choice of distribution is a
normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ...
. It is difficult to establish the validity of any distributional assumption, and this is a common criticism of random effects meta-analyses. However, variations of the exact distributional form may not make much of a difference, and simulations have shown that methods are relatively robust even under extreme distributional assumptions, both in estimating heterogeneity, and calculating an overall effect size. Inclusion of a
random effect In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are ...
to the model has the effect of making the inferences (in a sense) more conservative or cautious, as a (non-zero) heterogeneity will lead to greater uncertainty (and avoid overconfidence) in the estimation of overall effects. In the special case of a zero heterogeneity variance, the random-effects model again reduces to the special case of the common-effect model. Common meta-analysis models, however, should, of course, not be applied blindly or naively to collected sets of estimates. In case the results to be amalgamated differ substantially (in their contexts or in their estimated effects), a derived meta-analytic average may eventually not correspond to a reasonable
estimand An estimand is a quantity that is to be estimated in a statistical analysis. The term is used to distinguish the target of inference from the method used to obtain an approximation of this target (i.e., the estimator) and the specific value obtain ...
. When individual studies exhibit conflicting results, there likely are some reasons why the results differ; for instance, two subpopulations may experience different pharmacokinetic pathways. In such a scenario, it would be important to both know ''and'' consider relevant covariables in an analysis.


Testing

Statistical testing for a non-zero heterogeneity variance is often done based on '' Cochran's Q'' or related test procedures. This common procedure however is questionable for several reasons, namely, the low
power Power may refer to: Common meanings * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power, a type of energy * Power (social and political), the ability to influence people or events Math ...
of such tests especially in the very common case of only few estimates being combined in the analysis, as well as the specification of ''homogeneity'' as the
null hypothesis The null hypothesis (often denoted ''H''0) is the claim in scientific research that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data o ...
which is then only rejected in the presence of sufficient evidence against it.


Estimation

While the main purpose of a meta-analysis usually is estimation of the ''main effect'', investigation of the ''heterogeneity'' is also crucial for its interpretation. A large number of (
frequentist Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or pro ...
and
Bayesian Thomas Bayes ( ; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian ( or ) may be either any of a range of concepts and approaches that relate to statistical methods based on Bayes' theorem Bayes ...
)
estimator In statistics, an estimator is a rule for calculating an estimate of a given quantity based on Sample (statistics), observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguish ...
s is available. Bayesian estimation of the heterogeneity usually requires the specification of an appropriate
prior distribution A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the ...
. While many of these estimators behave similarly in case of a large number of studies, differences in particular arise in their behaviour in the common case of only few estimates. An incorrect zero between-study variance estimate is frequently obtained, leading to a false homogeneity assumption. Overall, it appears that heterogeneity is being consistently underestimated in meta-analyses.


Quantification

The heterogeneity ''
variance In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
'' is commonly denoted by τ², or the
standard deviation In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
(its square root) by τ. Heterogeneity is probably most readily interpretable in terms of τ, as this is the heterogeneity distribution's
scale parameter In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. Definition If a family ...
, which is measured in the same
units Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
as the overall effect itself. Another common measure of heterogeneity is I², a statistic that indicates the ''percentage of variance'' in a meta-analysis that is attributable to study heterogeneity (somewhat similarly to a
coefficient of determination In statistics, the coefficient of determination, denoted ''R''2 or ''r''2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s). It is a statistic used in t ...
). I² relates the heterogeneity variance's magnitude to the size of the individual estimates' variances (squared
standard error The standard error (SE) of a statistic (usually an estimator of a parameter, like the average or mean) is the standard deviation of its sampling distribution or an estimate of that standard deviation. In other words, it is the standard deviati ...
s); with this normalisation however, it is not quite obvious what exactly would constitute "small" or "large" amounts of heterogeneity. For a constant heterogeneity (τ), the availability of smaller or larger studies (with correspondingly differing standard errors associated) would affect the I² measure; so the actual interpretation of an I² value is not straightforward. The joint consideration of a ''prediction interval'' along with a confidence interval for the main effect may help getting a better sense of the contribution of heterogeneity to the uncertainty around the effect estimate.


See also

*
Homogeneity (statistics) In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of a ...
*
Random effects model In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are ...
*
Standard deviation In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
,
scale parameter In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. Definition If a family ...
,
variance In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
* Meta-regression


References


Further reading

* * * * * {{DEFAULTSORT:Study Heterogeneity Systematic review Meta-analysis