HOME

TheInfoList



OR:

In
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) ...
, strong NP-completeness is a property of computational problems that is a special case of
NP-complete In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by tryi ...
ness. A general computational problem may have numerical parameters. For example, the input to the
bin packing The bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used. The problem has ma ...
problem is a list of objects of specific sizes and a size for the bins that must contain the objects—these object sizes and bin size are numerical parameters. A problem is said to be strongly
NP-complete In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by tryi ...
(NP-complete in the strong sense), if it remains NP-complete even when all of its numerical parameters are bounded by a polynomial in the length of the input. A problem is said to be strongly
NP-hard In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard pr ...
if a strongly NP-complete problem has a polynomial reduction to it; in combinatorial optimization, particularly, the phrase "strongly NP-hard" is reserved for problems that are not known to have a polynomial reduction to another strongly NP-complete problem. Normally numerical parameters to a problem are given in
positional notation Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
, so a problem of input size ''n'' might contain parameters whose size is
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above * Exponential decay, decrease at a rate proportional to value *Exp ...
in ''n''. If we redefine the problem to have the parameters given in unary notation, then the parameters must be bounded by the input size. Thus strong NP-completeness or NP-hardness may also be defined as the NP-completeness or NP-hardness of this unary version of the problem. For example,
bin packing The bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used. The problem has ma ...
is strongly NP-complete while the
0-1 Knapsack problem The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit an ...
is only
weakly NP-complete In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data inv ...
. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in
pseudo-polynomial time In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the ''numeric value'' of the input (the largest integer present in the input)—but not necessarily in the ''length'' of t ...
by
dynamic programming Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. I ...
. From a theoretical perspective any strongly NP-hard optimization problem with a polynomially bounded objective function cannot have a
fully polynomial-time approximation scheme A fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It r ...
(or
FPTAS A fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It r ...
) unless P = NP. However, the converse fails: e.g. if P does not equal NP, knapsack with two constraints is not strongly NP-hard, but has no FPTAS even when the optimal objective is polynomially bounded. Some strongly NP-complete problems may still be easy to solve ''on average'', but it's more likely that difficult instances will be encountered in practice.


References

{{Reflist Strongly NP-complete problems Complexity classes Computational complexity theory