HOME

TheInfoList



OR:

A stellar magnetic field is a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
generated by the motion of conductive plasma inside a
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
. This motion is created through
convection Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
, which is a form of energy transport involving the physical movement of material. A localized
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's
photosphere The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will esc ...
. This creates starspots on the surface, and the related phenomenon of coronal loops.


Measurement

A star's magnetic field can be measured using the
Zeeman effect The Zeeman effect () is the splitting of a spectral line into several components in the presence of a static magnetic field. It is caused by the interaction of the magnetic field with the magnetic moment of the atomic electron associated with ...
. Normally the atoms in a star's atmosphere will absorb certain frequencies of energy in the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
, producing characteristic dark absorption lines in the spectrum. However, when the atoms are within a magnetic field, these lines become split into multiple, closely spaced lines. The energy also becomes polarized with an orientation that depends on the orientation of the magnetic field. Thus the strength and direction of the star's magnetic field can be determined by examination of the Zeeman effect lines. A stellar spectropolarimeter is used to measure the magnetic field of a star. This instrument consists of a
spectrograph An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
combined with a
polarimeter A polarimeter is a scientific instrument used to measure optical rotation: the angle of rotation caused by passing linearly polarized light through an Optical activity, optically active substance. Some chemical substances are optically active, ...
. The first instrument to be dedicated to the study of stellar magnetic fields was NARVAL, which was mounted on the Bernard Lyot Telescope at the Pic du Midi de Bigorre in the French
Pyrenees The Pyrenees are a mountain range straddling the border of France and Spain. They extend nearly from their union with the Cantabrian Mountains to Cap de Creus on the Mediterranean coast, reaching a maximum elevation of at the peak of Aneto. ...
mountains. Various measurements—including
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
measurements over the last 150 years; 14C in tree rings; and 10Be in ice cores—have established substantial magnetic variability of the Sun on decadal, centennial and millennial time scales.


Field generation

Stellar magnetic fields, according to
solar dynamo The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, ...
theory, are caused within the convective zone of the star. The convective circulation of the conducting plasma functions like a
dynamo "Dynamo Electric Machine" (end view, partly section, ) A dynamo is an electrical generator that creates direct current using a commutator. Dynamos employed electromagnets for self-starting by using residual magnetic field left in the iron cores ...
. This activity destroys the star's primordial magnetic field, then generates a dipolar magnetic field. As the star undergoes differential rotation—rotating at different rates for various latitudes—the magnetism is wound into a toroidal field of "flux ropes" that become wrapped around the star. The fields can become highly concentrated, producing activity when they emerge on the surface. The magnetic field of a rotating body of conductive gas or liquid develops self-amplifying
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
s, and thus a self-generated magnetic field, due to a combination of differential rotation (different angular velocity of different parts of body),
Coriolis force In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motio ...
s and induction. The distribution of currents can be quite complicated, with numerous open and closed loops, and thus the magnetic field of these currents in their immediate vicinity is also quite twisted. At large distances, however, the magnetic fields of currents flowing in opposite directions cancel out and only a net dipole field survives, slowly diminishing with distance. Because the major currents flow in the direction of conductive mass motion (equatorial currents), the major component of the generated magnetic field is the dipole field of the equatorial current loop, thus producing magnetic poles near the geographic poles of a rotating body. The magnetic fields of all celestial bodies are often aligned with the direction of rotation, with notable exceptions such as certain
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s.


Periodic field reversal

Another feature of this dynamo model is that the currents are AC rather than DC. Their direction, and thus the direction of the magnetic field they generate, alternates more or less periodically, changing amplitude and reversing direction, although still more or less aligned with the axis of rotation. The
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's major component of magnetic field reverses direction every 11 years (so the period is about 22 years), resulting in a diminished magnitude of magnetic field near reversal time. During this dormancy, the
sunspot Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually aff ...
s activity is at maximum (because of the lack of magnetic braking on plasma) and, as a result, massive ejection of high energy plasma into the
solar corona In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as so ...
and interplanetary space takes place. Collisions of neighboring sunspots with oppositely directed magnetic fields result in the generation of strong electric fields near rapidly disappearing magnetic field regions. This electric field accelerates electrons and protons to high energies (kiloelectronvolts) which results in jets of extremely hot plasma leaving the Sun's surface and heating coronal plasma to high temperatures (millions of
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
). If the gas or liquid is very viscous (resulting in
turbulent In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
differential motion), the reversal of the magnetic field may not be very periodic. This is the case with the Earth's magnetic field, which is generated by turbulent currents in a viscous outer core.


Surface activity

Starspot Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in gene ...
s are regions of intense magnetic activity on the surface of a star. (On the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
they are termed
sunspot Sunspots are temporary spots on the Sun's surface that are darker than the surrounding area. They are one of the most recognizable Solar phenomena and despite the fact that they are mostly visible in the solar photosphere they usually aff ...
s.) These form a visible component of magnetic
flux tube A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magn ...
s that are formed within a star's
convection zone A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation ...
. Due to the differential rotation of the star, the tube becomes curled up and stretched, inhibiting convection and producing zones of lower than normal temperature.
Coronal loop In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's Stellar atmosphere, atmosphere made up of relatively dense Plasma (physics), plasma confined and isolated from the surrounding medium by magnetic flux tubes. Co ...
s often form above starspots, forming from magnetic field lines that stretch out into the
stellar corona In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as so ...
. These in turn serve to heat the corona to temperatures over a million
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s. The magnetic fields linked to starspots and coronal loops are linked to
flare A flare, also sometimes called a fusée, fusee, or bengala, bengalo in several European countries, is a type of pyrotechnic that produces a bright light or intense heat without an explosion. Flares are used for distress signaling, illuminatio ...
activity, and the associated
coronal mass ejection A coronal mass ejection (CME) is a significant ejection of plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understandin ...
. The plasma is heated to tens of millions of kelvins, and the particles are accelerated away from the star's surface at extreme velocities. Surface activity appears to be related to the age and rotation rate of main-sequence stars. Young stars with a rapid rate of rotation exhibit strong activity. By contrast middle-aged, Sun-like stars with a slow rate of rotation show low levels of activity that varies in cycles. Some older stars display almost no activity, which may mean they have entered a lull that is comparable to the Sun's Maunder minimum. Measurements of the time variation in stellar activity can be useful for determining the differential rotation rates of a star.


Magnetosphere

A star with a magnetic field will generate a
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
that extends outward into the surrounding space. Field lines from this field originate at one magnetic pole on the star then end at the other pole, forming a closed loop. The magnetosphere contains charged particles that are trapped from the
stellar wind A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter. This results in a transfer of
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
from the star to the surrounding space, causing a slowing of the
stellar rotation Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface. The rotation of a star produces an equatorial bu ...
rate. Rapidly rotating stars have a higher mass loss rate, resulting in a faster loss of momentum. As the rotation rate slows, so too does the angular deceleration. By this means, a star will gradually approach, but never quite reach, the state of zero rotation.


Magnetic stars

A
T Tauri star T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus Molecular Cloud, Taurus star-forming region. They are found near mo ...
is a type of
pre-main-sequence star A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope o ...
that is being heated through gravitational contraction and has not yet begun to burn hydrogen at its core. They are variable stars that are magnetically active. The magnetic field of these stars is thought to interact with its strong stellar wind, transferring
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
to the surrounding
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
. This allows the star to brake its rotation rate as it collapses. Small, M-class stars (with 0.1–0.6
solar mass The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxie ...
es) that exhibit rapid, irregular variability are known as
flare star A flare star is a variable star that can undergo unpredictable dramatic increases in brightness for a few minutes. It is believed that the flares on flare stars are analogous to solar flares in that they are due to magnetic reconnection, the magne ...
s. These fluctuations are hypothesized to be caused by flares, although the activity is much stronger relative to the size of the star. The flares on this class of stars can extend up to 20% of the circumference, and radiate much of their energy in the blue and ultraviolet portion of the spectrum. Straddling the boundary between stars that undergo nuclear fusion in their cores and non-hydrogen fusing
brown dwarf Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
s are the ultracool dwarfs. These objects can emit radio waves due to their strong magnetic fields. Approximately 5–10% of these objects have had their magnetic fields measured. The coolest of these, 2MASS J10475385+2124234 with a temperature of 800-900 K, retains a magnetic field stronger than 1.7 kG, making it some 3000 times stronger than the Earth's magnetic field. Radio observations also suggest that their magnetic fields periodically change their orientation, similar to the Sun during the
solar cycle The Solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a periodic 11-year change in the Sun's activity measured in terms of Modern Maximum, variations in the number of observed sunspots on the Sun ...
.
Planetary nebula A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives. The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
e are created when a
red giant A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The stellar atmosphere, outer atmosphere is inflated and tenuous, making the radius large and the surface t ...
star ejects its outer envelope, forming an expanding shell of gas. However it remains a mystery why these shells are not always spherically symmetrical. 80% of planetary nebulae do not have a spherical shape; instead forming bipolar or elliptical nebulae. One hypothesis for the formation of a non-spherical shape is the effect of the star's magnetic field. Instead of expanding evenly in all directions, the ejected plasma tends to leave by way of the magnetic poles. Observations of the central stars in at least four planetary nebulae have confirmed that they do indeed possess powerful magnetic fields. After some massive stars have ceased
thermonuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutron by-products. The difference in mass between the reactants and products is manifested as either the release or absorption of ener ...
, a portion of their mass collapses into a compact body of
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s called a
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
. These bodies retain a significant magnetic field from the original star, but the collapse in size causes the strength of this field to increase dramatically. The rapid rotation of these collapsed neutron stars results in a
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
, which emits a narrow beam of energy that can periodically point toward an observer. Compact and fast-rotating astronomical objects (
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
s,
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s and
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s) have extremely strong magnetic fields. The magnetic field of a newly born fast-spinning neutron star is so strong (up to 108 teslas) that it electromagnetically radiates enough energy to quickly (in a matter of few million years) damp down the star rotation by 100 to 1000 times. Matter falling on a neutron star also has to follow the magnetic field lines, resulting in two hot spots on the surface where it can reach and collide with the star's surface. These spots are literally a few feet (about a metre) across but tremendously bright. Their periodic eclipsing during star rotation is hypothesized to be the source of pulsating radiation (see
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s). An extreme form of a magnetized neutron star is the
magnetar A magnetar is a type of neutron star with an extremely powerful magnetic field (~109 to 1011 T, ~1013 to 1015 G). The magnetic-field decay powers the emission of high-energy electromagnetic radiation, particularly X-rays and gamma rays.Ward; Br ...
. These are formed as the result of a
core-collapse supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original obj ...
. The existence of such stars was confirmed in 1998 with the measurement of the star SGR 1806-20. The magnetic field of this star has increased the surface temperature to 18 million K and it releases enormous amounts of energy in
gamma ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic events occurring in distant galaxies which represent the brightest and most powerful class of explosion in the universe. These extreme electromagnetic emissions are second ...
s. Jets of relativistic plasma are often observed along the direction of the magnetic poles of active black holes in the centers of very young galaxies.


Star-planet interaction controversy

In 2008, a team of astronomers first described how as the exoplanet orbiting HD 189733 A reaches a certain place in its orbit, it causes increased stellar flaring. In 2010, a different team found that every time they observe the
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first det ...
at a certain position in its orbit, they also detected
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
flares. Theoretical research since 2000 suggested that an exoplanet very near to the star that it orbits may cause increased flaring due to the interaction of their
magnetic fields A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, or because of
tidal force The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction. It is the ...
s. In 2019, astronomers examined these claims using combined data from
Arecibo Observatory The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science F ...
, MOST, and the Automated Photoelectric Telescope, in addition to historical observations of the star at radio, optical, ultraviolet, and X-ray wavelengths. Their analysis found that the previous claims were exaggerated and the host star failed to display many of the brightness and spectral characteristics associated with stellar flaring and solar
active regions In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions such a ...
, including sunspots. They also found that the claims did not stand up to statistical analysis, given that many stellar flares are seen regardless of the position of the exoplanet, therefore debunking the earlier claims. The magnetic fields of the host star and exoplanet do not interact, and this system is no longer believed to have a "star-planet interaction."


See also


References


External links

* * {{DEFAULTSORT:Stellar Magnetic Field
Magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
Magnetism in astronomy Concepts in stellar astronomy