Steam-electric Power Plant
   HOME

TheInfoList



OR:

The steam-electric power station is a power station in which the electric generator is
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization ...
driven. Water is heated, turns into steam and spins a
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam-electric power plants is due to the different fuel sources. Almost all coal,
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space * Nuclear ...
, geothermal, solar thermal electric power plants, waste incineration plants as well as many natural gas power plants are steam-electric. Natural gas is frequently combusted in gas turbines as well as boilers. The waste heat from a gas turbine can be used to raise steam, in a
combined cycle A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turb ...
plant that improves overall efficiency. Worldwide, most
electric power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions o ...
is produced by steam-electric power plants. The only widely used alternatives are
photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially us ...
s, direct mechanical power conversion as found in hydroelectric and wind turbine power as well as some more exotic applications like tidal power or wave power and finally some forms of geothermal power plants. Niche applications for methods like betavoltaics or chemical power conversion (including electrochemistry) are only of relevance in batteries and atomic batteries.
Fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
s are a proposed alternative for a future hydrogen economy.


History

Reciprocating steam engines have been used for mechanical power sources since the 18th Century, with notable improvements being made by
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fun ...
. The very first commercial central electrical generating stations in New York and London, in 1882, also used reciprocating steam engines. As generator sizes increased, eventually turbines took over due to higher efficiency and lower cost of construction. By the 1920s any central station larger than a few thousand kilowatts would use a turbine prime mover.


Efficiency

The efficiency of a conventional steam-electric power plant, defined as energy produced by the plant divided by the heating value of the fuel consumed by it, is typically 33 to 48%, limited as all heat engines are by the laws of thermodynamics (See: Carnot cycle). The rest of the energy must leave the plant in the form of heat. This waste heat can be removed by cooling water or in cooling towers. ( cogeneration uses the waste heat for district heating). An important class of steam power plants is associated with
desalination Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in Soil salinity control, soil desalination, which is an issue f ...
facilities, which are typically found in desert countries with large supplies of natural gas. In these plants freshwater and electricity are equally important products. Since the efficiency of the plant is fundamentally limited by the ratio of the absolute temperatures of the steam at turbine input and output, efficiency improvements require use of higher temperature, and therefore higher pressure, steam. Historically, other working fluids such as
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
have been experimentally used in a mercury vapour turbine power plant, since these can attain higher temperatures than water at lower working pressures. However, poor heat transfer properties and the obvious hazard of toxicity have ruled out mercury as a working fluid. Another option is using a
supercritical fluid A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist, but below the pressure required to compress it into a solid. It can effuse through porous so ...
as a working fluid. Supercritical fluids behave similar to gases in some respects and similar to liquids in others.
Supercritical water Supercritical water oxidation (SCWO) is a process that occurs in water at temperatures and pressures above a mixture's thermodynamic critical point. Under these conditions water becomes a fluid with unique properties that can be used to advantag ...
or
supercritical carbon dioxide Supercritical carbon dioxide (s) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure. Carbon dioxide usually behaves as a gas in air at standard temperature and pressure (STP), or as ...
can be heated to much higher temperatures than are achieved in conventional steam cycles thus allowing for higher thermal efficiency. However, these substances need to be kept at high pressures (above the critical pressure) to maintain supercriticality and there are issues with corrosion.


Components Of Steam plant


Condenser

Steam-electric power plants use a surface condenser cooled by water circulating through tubes. The steam which was used to turn the turbine is exhausted into the condenser and is condensed as it comes in contact with the tubes full of cool circulating water. The condensed steam, commonly referred to as
condensate Condensate may refer to: * The liquid phase produced by the condensation of steam or any other gas * The product of a chemical condensation reaction, other than water * Natural-gas condensate, in the natural gas industry * ''Condensate'' (album ...
. is withdrawn from the bottom of the condenser. The adjacent image is a diagram of a typical surface condenser.Energy savings in steam systems
''Figure 3a, Layout of surface condenser'' (scroll to page 11 of 34 pdf pages) For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 °C where the vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum. Thus leaks of non-condensable air into the closed loop must be prevented. Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning. If a good source of cooling water is not available, cooling towers may be used to reject waste heat to the atmosphere. A large river or lake can also be used as a ''heat sink'' for cooling the condensers; temperature rises in naturally occurring waters may have undesirable ecological effects, but may also incidentally improve yields of fish in some circumstances.


Feedwater heater

In the case of a conventional steam-electric power plant using a drum boiler, the surface condenser removes the latent heat of vaporization from the steam as it changes states from vapor to liquid. The condensate pump then pumps the condensate water through a feedwater heater, which raises the temperature of the water by using extraction steam from various stages of the turbine. Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system.Fundamentals of Steam Power
by Kenneth Weston,
University of Tulsa The University of Tulsa (TU) is a private research university in Tulsa, Oklahoma. It has a historic affiliation with the Presbyterian Church and the campus architectural style is predominantly Collegiate Gothic. The school traces its origin to ...
This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.


Boiler

Once this water is inside the boiler or steam generator, the process of adding the latent heat of vaporization begins. The boiler transfers energy to the water by the chemical reaction of burning some type of fuel. The water enters the boiler through a section in the convection pass called the economizer. From the economizer, it passes to the steam drum, from where it goes down the downcomers to the lower inlet water wall headers. From the inlet headers, the water rises through the waterwalls. Some of it is turned into steam due to the heat being generated by the burners located on the front and rear waterwalls (typically). From the waterwalls, the water/steam mixture enters the steam drum and passes through a series of steam and water separators and then dryers inside the
steam drum A steam drum is a standard feature of a water-tube boiler. It is a reservoir of water/steam at the top end of the water tubes. The drum stores the steam generated in the water tubes and acts as a phase- separator for the steam/water mixture. The d ...
. The steam separators and dryers remove water droplets from the steam; liquid water carried over into the turbine can produce destructive erosion of the turbine blades. and the cycle through the waterwalls is repeated. This process is known as natural circulation. Geothermal plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. Nuclear plants also boil water to raise steam, either directly passing the working steam through the reactor or else using an intermediate heat exchanger.


Superheater

After the steam is conditioned by the drying equipment inside the drum, it is piped from the upper drum area into an elaborate set up of tubing in different areas of the boiler, the areas known as
superheater A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, steam engines, and in processes such as steam reforming. There ar ...
and reheater. The steam vapor picks up energy and is superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves of the high-pressure turbine.


See also

* Boiler *
Combined heat and power Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elect ...
* Cooling tower system *
Flue gas stacks A flue-gas stack, also known as a smoke stack, chimney stack or simply as a stack, is a type of chimney, a vertical pipe, channel or similar structure through which combustion product gases called flue gases are exhausted to the outside air. Flue ...
* Fossil fuel power plant *
Geothermal power Geothermal power is electrical power generated from geothermal energy. Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 2 ...
*
Nuclear power plant A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a electric generator, generato ...
* Power station * Thermal power station * Water-tube boiler


References


External links


Power plant diagram
{{Authority control Power station technology Chemical process engineering Energy conversion