HOME

TheInfoList



OR:

Scuba gas management is the aspect of
scuba diving Scuba diving is a mode of underwater diving whereby divers use breathing equipment that is completely independent of a surface air supply. The name "scuba", an acronym for "Self-Contained Underwater Breathing Apparatus", was coined by Chris ...
which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of
gas cylinders A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. High-pressure gas cylinders are also called ''bottles''. Inside the cylinder the stored contents may be in a state of compressed gas, vapor ...
for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations,
nitrogen narcosis Narcosis while diving (also known as nitrogen narcosis, inert gas narcosis, raptures of the deep, Martini effect) is a reversible alteration in consciousness that occurs while diving at depth. It is caused by the anesthetic effect of certain gas ...
, and
oxygen toxicity Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen () at increased partial pressures. Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lu ...
risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas. Management of breathing gas during the dive is a critical skill to avoid potentially fatal consequences. For the basic case of no-decompression open-water diving, which allows a free emergency ascent, this requires ensuring sufficient gas remains for a safe ascent (plus a contingency reserve) and for the possibility of an assisted ascent, where the diver shares gas with another diver. Gas management becomes more complex when
solo diving Solo diving is the practice of self-sufficient underwater diving without a "dive buddy", particularly with reference to scuba diving, but the term is also applied to freediving. Professionally, solo diving has always been an option which depend ...
,
decompression diving A dive profile is a description of a diver's pressure exposure over time. It may be as simple as just a depth and time pair, as in: "sixty for twenty," (a bottom time of 20 minutes at a depth of 60 feet) or as complex as a second by second grap ...
,
penetration diving Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on contex ...
, or diving with more than one gas mixture. Other necessary knowledge includes awareness of personal and other team members' gas consumption rates under varying conditions, such as at the surface, at varying depths, for different dive task loadings and personal physical effort and mental states. Divers need to be aware of the remaining gas available, so a
submersible pressure gauge A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are als ...
is fitted to each diving cylinder to indicate the remaining gas pressure, and the cylinder is clearly labelled to indicate the gas mixture. The amount of available gas remaining can be calculated from the cylinder pressure, the cylinder internal volume, and the planned reserve allowance. The time that a diver can dive on the available gas depends on the depth, work load, the fitness of the diver and that the gas is safe to breathe at that depth. Breathing rates can vary considerably, and estimates are largely derived from experience. Conservative estimates are generally used for planning purposes. The divers must turn the dive and start the exit and ascent while there is enough gas to surface safely. This may require the calculation of minimum acceptable pressures for various stages of a dive, known as critical pressures. To limit the risk of equipment malfunctions that could cause a loss of breathing gas, divers maintain their breathing apparatus in good order, assemble it with care and test it before use. This does not entirely eliminate the possibility of a malfunction that could cause a loss of gas, so the requisite skills for dealing with the reasonably foreseeable malfunctions should be learned and maintained, and redundant supplies carried to allow for circumstances of unrecoverable malfunction.


Gas planning

Scuba gas planning is the aspect of
dive planning Dive planning is the process of planning an underwater diving operation. The purpose of dive planning is to increase the probability that a dive will be completed safely and the goals achieved. Some form of planning is done for most underwater di ...
and of gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned
dive profile A dive profile is a description of a diver's pressure exposure over time. It may be as simple as just a depth and time pair, as in: "sixty for twenty," (a bottom time of 20 minutes at a depth of 60 feet) or as complex as a second by second grap ...
. It usually assumes that the dive profile, including decompression, is known, but the process may be iterative, involving changes to the dive profile as a consequence of the gas requirement calculation, or changes to the gas mixtures chosen. Use of calculated reserves based on planned dive profile and estimated gas consumption rates rather than an arbitrary pressure is sometimes referred to as rock bottom gas management. The purpose of gas planning is to ensure that for all reasonably foreseeable contingencies, the divers of a team have sufficient breathing gas to safely return to a place where more breathing gas is available. In most cases this will be the surface. Gas planning includes the following tasks: * Choice of
breathing gas A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed h ...
es to suit the dive, * Choice of scuba configuration for primary breathing gas, * Choice of scuba configuration for emergency breathing gas, * Estimation of gas quantities required for the planned dive, including , , and decompression gases, as appropriate to the planned profile. * Estimation of gas quantities for reasonably foreseeable contingencies. Under stress it is likely that a diver will increase breathing rate and decrease swimming speed. Both of these lead to a higher gas consumption during an emergency exit or ascent. * Choice of
cylinders A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infini ...
to carry the required gases. Each cylinder's volume must be sufficient to contain the required quantity of gas at or below its working pressure. * Calculation of the required pressures for each of the gases in each of the cylinders to provide the required quantities. * Specifying the of relevant gas mixtures for appropriate sectors (waypoints) of the planned dive profile, taking into account the estimated breathing rates of the divers who may have to use the gas in a contingency (
gas matching Scuba gas planning is the aspect of dive planning and of gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profile, including decompre ...
). Gas planning is a personal responsibility of the
recreational Recreation is an activity of leisure, leisure being discretionary time. The "need to do something for recreation" is an essential element of human biology and psychology. Recreational activities are often done for enjoyment, amusement, or pleasure ...
and
technical diver Technical diving (also referred to as tec diving or tech diving) is scuba diving that exceeds the agency-specified limits of recreational diving for non-professional purposes. Technical diving may expose the diver to hazards beyond those normally ...
, but in
professional diving Professional diving is underwater diving where the divers are paid for their work. The procedures are often regulated by legislation and codes of practice as it is an inherently hazardous occupation and the diver works as a member of a team. Du ...
it is one of the responsibilities of the
diving supervisor The diving supervisor is the professional diving team member who is directly responsible for the diving operation's safety and the management of any incidents or accidents that may occur during the operation; the supervisor is required to be ava ...
, and the required procedures should be detailed in the
operations manual The operations manual is the documentation by which an organisation provides guidance for members and employees to perform their functions correctly and reasonably efficiently. It documents the approved standard procedures for performing operatio ...
.


Rule of thumb gas planning

The formal and relatively complete procedure for scuba gas planning assumes that a dive plan is available that is sufficiently detailed that most of the variables are known, but many recreational dives are conducted on a more ''ad hoc'' basis. The majority of recreational divers do not do penetration dives or dives exceeding the no decompression limit, and can safely ascend directly to the surface at any point of a dive. Such ascents do not use a large volume of gas, and these divers are commonly taught to start the ascent at a given remaining pressure in the cylinder, regardless of the depth, size of cylinder, or breathing rate expected, just because it is easy to remember and makes the dive leader's work simpler on group dives. It may occasionally be insufficiently conservative, but is more often unnecessarily conservative, particularly on shallow dives with a large cylinder. Divers may be told to notify the dive leader at 80 or 100 bar and to return to the boat with not less than 50 bar or 700 psi or something similar remaining, but one of the reasons for having the 50 bar in reserve is to make the return to the boat safer, by allowing the diver to swim on the surface in choppy water while breathing off the regulator. This residual gas may also be well used for an extended or additional safety stop when the dive approached the no decompression limit, but it is good practice not to entirely use up the gas, as an empty cylinder is easier to contaminate during handling, and the filling operator may be required to internally inspect any cylinder which does not register a residual pressure when presented for filling, or reject it for filling until a competent person has made a internal inspection. For deeper dives, dives with some planned decompression, or solo dives, a bailout cylinder can be carried, with sufficient gas suitable to surface safely from any point on the planned dive profile. If the bailout cylinder is reserved for use only in emergencies, it can last for many dives, as very little gas need to be used when performing the pre-dive checks on the cylinder and regulator. The rule of thirds is another such
rule of thumb In English, the phrase ''rule of thumb'' refers to an approximate method for doing something, based on practical experience rather than theory. This usage of the phrase can be traced back to the 17th century and has been associated with various t ...
. This rule generally only applies to diving in overhead environments, such as caves and wrecks, where a direct ascent to the surface is impossible and the divers must return the way they came, and no decompression stops are intended. For divers following this rule, one third of the gas supply is used for the outward journey, one third for the return journey and one third is held in reserve in case of an emergency. The dive is turned when the first diver reaches one third of the starting pressure. However, when diving with a buddy with a higher breathing rate or a different volume of gas, it may be necessary to set one third of the buddy's gas supply as the remaining 'third'. This means that the turn point to exit is earlier, or that the diver with the lower breathing rate carries a larger volume of gas than would be required if both had the same breathing rate. The rule of thirds does not allow for higher consumption rates under stress. Reserves are needed at the end of dives in case the diver has gone deeper or longer than planned and must remain underwater to do
decompression stop The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, to allow asymptomatic and harmless release of excess inert gases dissolved in ...
s before being able to ascend safely to the surface. A diver without gas cannot do the stops and risks
decompression sickness Decompression sickness (abbreviated DCS; also called divers' disease, the bends, aerobullosis, and caisson disease) is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompressio ...
. In an
overhead environment Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving (disambiguation), diving, an ambiguous term with several possible meani ...
, where it is not possible to ascend directly to the surface, the reserve third allows the diver to donate gas to an out-of-gas buddy, providing enough gas to let both divers exit the enclosure and ascend to the surface.


Rock bottom gas planning

The term "rock bottom gas planning" is used for the method of gas planning based on a planned dive profile where a reasonably accurate estimate of the depths, times, and level of activity is available, do the calculations for gas mixtures and the appropriate quantities of each mixture are known well enough to make fairly rigorous calculations useful.


Gas blending

Gas blending for scuba diving (or gas mixing) is the filling of
diving cylinder A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scu ...
s with non-
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
breathing gas A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed h ...
mixtures such as
nitrox Nitrox refers to any gas mixture composed (excepting trace gases) of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater ...
, trimix and
heliox Heliox is a breathing gas mixture of helium (He) and oxygen (O2). It is used as a medical treatment for patients with difficulty breathing because mixture generates less resistance than atmospheric air when passing through the airways of the lung ...
. Use of these gases is generally intended to improve overall safety of the planned dive, by reducing the risk of
decompression sickness Decompression sickness (abbreviated DCS; also called divers' disease, the bends, aerobullosis, and caisson disease) is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompressio ...
and/or
nitrogen narcosis Narcosis while diving (also known as nitrogen narcosis, inert gas narcosis, raptures of the deep, Martini effect) is a reversible alteration in consciousness that occurs while diving at depth. It is caused by the anesthetic effect of certain gas ...
, and may improve ease of breathing. Filling cylinders with a mixture of gases has dangers for both the filler and the diver. During filling there is a risk of fire due to use of oxygen and a risk of explosion due to the use of high-pressure gases. The composition of the mix must be safe for the depth and duration of the planned dive. If the concentration of oxygen is too lean the diver may lose consciousness due to
hypoxia Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of the specific environment * Hypoxia (medical), abnormally low level of oxygen in the tis ...
and if it is too rich the diver may suffer
oxygen toxicity Oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen () at increased partial pressures. Severe cases can result in cell damage and death, with effects most often seen in the central nervous system, lu ...
. The concentration of inert gases, such as nitrogen and helium, are planned and checked to avoid nitrogen narcosis and decompression sickness. Methods used include batch mixing by partial pressure or by mass fraction, and continuous blending processes. Completed blends are analysed for composition for the safety of the user. Gas blenders may be required by legislation to prove competence if filling for other persons.


Filling of cylinders

Diving cylinders are filled by attaching a high-pressure gas supply to the cylinder valve, opening the valve and allowing gas to flow into the cylinder until the desired pressure is reached, then closing the valves, venting the connection and disconnecting it. This process involves a risk of the cylinder or the filling equipment failing under pressure, both of which are hazardous to the operator, so procedures to control these risks are generally followed. Rate of filling must be limited to avoid excessive heating, the temperature of cylinder and contents must remain below the maximum working temperature specified by the applicable standard. A flexible high pressure hose used for this purpose is known as a filling whip.


Filling from a compressor

Breathing air supply can come directly from a high-pressure breathing air compressor, from a high-pressure storage system, or from a combined storage system with compressor. Direct charging is energy intensive, and the charge rate will be limited by the available power source and capacity of the compressor. A large-volume bank of high-pressure storage cylinders allows faster charging or simultaneous charging of multiple cylinders, and allows for provision of more economical high-pressure air by recharging the storage banks from a low-power compressor, or using lower cost
off-peak Peak demand on an electrical grid is simply the highest electrical power demand that has occurred over a specified time period (Gönen 2008). Peak demand is typically characterized as annual, daily or seasonal and has the unit of power. Peak dem ...
electrical power. The quality of compressed breathing air for diving is usually specified by national or organisational standards, and the steps generally taken to assure the air quality include: * use of a compressor rated for breathing air, * use of compressor lubricants rated for breathing air, * filtration of intake air to remove particulate contamination, * positioning of the compressor air intake in clean air clear of known sources of contaminants such as internal combustion exhaust fumes, sewer vents etc. * removal of condensate from the compressed air by water separators. This may be done between stages on the compressor as well as after compression, * filtration after compression to remove remaining water, oil, and other contaminants using specialized filter media such as
desiccant A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccant ...
s,
molecular sieve A molecular sieve is a material with pores (very small holes) of uniform size. These pore diameters are similar in size to small molecules, and thus large molecules cannot enter or be adsorbed, while smaller molecules can. As a mixture of molecu ...
or
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area avail ...
, * traces of carbon monoxide may be catalyzed to carbon dioxide by
Hopcalite Hopcalite is the trade name for a number of mixtures that mainly consist of oxides of copper and manganese, which are used as catalysts for the conversion of carbon monoxide to carbon dioxide when exposed to the oxygen in the air at room temperatu ...
, * periodical air quality tests, * scheduled filter changes and maintenance of the compressor.


Filling from high-pressure storage

Cylinders may also be filled directly from high-pressure storage systems by decanting, with or without pressure boosting to reach the desired charging pressure. Cascade filling may be used for efficiency when multiple storage cylinders are available. High-pressure storage is commonly used when blending
nitrox Nitrox refers to any gas mixture composed (excepting trace gases) of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater ...
,
heliox Heliox is a breathing gas mixture of helium (He) and oxygen (O2). It is used as a medical treatment for patients with difficulty breathing because mixture generates less resistance than atmospheric air when passing through the airways of the lung ...
and trimix diving gases, and for oxygen for rebreathers and decompression gas. Nitrox and trimix blending may include decanting the oxygen and/or helium, and topping up to working pressure using a compressor, after which the gas mixture must be analysed and the cylinder labeled with the gas composition.


Breathing gas analysis

Before a gas mix leaves the blending station and before the diver breathes from it, the fraction of oxygen in the mix should be checked. Usually
electro-galvanic oxygen sensor An electro-galvanic fuel cell is an electrochemical device which consumes a fuel to produce an electrical output by a chemical reaction. One form of electro-galvanic fuel cell based on the oxidation of lead is commonly used to measure the concen ...
s are used to measure the oxygen fraction.
Helium analyzer A Helium analyzer is an instrument used to identify the presence and concentration of helium in a mixture of gases. In Technical diving where breathing gas mixtures known as Trimix comprising oxygen, helium and nitrogen are used, it is necessar ...
s also exist, although they are relatively expensive, which allow the trimix diver to measure the fraction of helium in the mix. It is important that the gas mixture in a cylinder is thoroughly mixed before analysing or the results will be inaccurate. When partial pressure or mass blending is done at low flow rates the gases entering the cylinder are not moving fast enough to ensure good mixing, and particularly when blends contain helium, they may tend to remain in layers due to density differences. This is termed stratification, and if left long enough, diffusion will ensure complete mixing. However, if the gas is to be analysed soon after blending, mechanical agitation is recommended. This may be by lying a single cylinder on a flat surface and rolling it for a short period, but twins are more usually inverted a few times. Stratification is more pronounced with blends containing helium, but can also lead to inaccurate analysis of nitrox blends. Reliable specifications for the amount of agitation required for complete mixing are not available, but if the analysis remains the same before and after agitation the gas is probably fully mixed. Once mixed, gas will not stratify with time. When analysed, the gas composition is generally recorded on a label on the cylinder, along with the maximum operating depth for the gas, in a position that can be seen by the diver when it is to be used for gas switching during a dive.


Marking and identification of cylinders

A label identifying the cylinder contents by gas type and constituent fraction may be required by law, and is useful to the user as a record of what mixture was last analysed in the cylinder. Details of the format of the label and colour coding of the cylinder vary with jurisdiction. Information recommended by technical diving organisations includes the diver's name, which helps prevent accidentally using someone else's gas, and
maximum operating depth In underwater diving activities such as saturation diving, technical diving and nitrox diving, the maximum operating depth (MOD) of a breathing gas is the depth below which the partial pressure of oxygen (pO2) of the gas mix exceeds an acceptable l ...
, which is a simple but critical safety check to ensure that an oxygen rich gas is not used too deep. This information should be visible to the diver when selecting the regulator, and may be confirmed by sucking on the mouthpiece before opening the cylinder valve, then opening the valve and noting the immediate availability of gas.


Scuba configuration

There are two main configurations used to carry scuba sets: Back mount and side mount. One of the advantages of side or sling mounting scuba cylinders, is that the valve is both relatively accessible for opening and closing, and the shoulder of the cylinder is visible in most water conditions, so the diver can read the label identifying the contents and trace the second stage hose from the first stage to the second stage by feel, allowing positive identification of the gas source in use at any time, and thereby ensuring that the mixture is appropriate for the depth. This is limited with back mounted cylinders, as the tops of the cylinders are behind the diver's head, but as the diver should be well aware of the back gas mixture, and can trace the hose back to the cylinder valve by feel, this is not generally a problem if there is only one mixture carried on the back.


Gas quantities for open circuit

The quantity of open circuit breathing gas required will depend on the gases chosen, which affects decompression times, and the rate at which gas is consumed during each part of the dive.


Choice of gases

The composition of a breathing gas mixture will depend on its intended use. The mix must be chosen to provide a safe partial pressure of oxygen (PO2) at the working depth. Most dives will use the same mixture for the whole dive, so the composition will be selected to be breathable at all planned depths. There may be decompression considerations. The amount of inert gas that will dissolve in the tissues depends on the partial pressure of the gas its solubility and the time it is breathed at pressure, so the gas may be enriched with oxygen to reduce decompression requirements. The gas must also have a breathable density at the maximum depth intended for its use. A recommended value for maximum density is 6 grams per litre, as higher densities reduce the maximum ventilation rate sufficiently to induce
hypercapnia Hypercapnia (from the Greek ''hyper'' = "above" or "too much" and ''kapnos'' = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous pro ...
. Gases may be chosen for bottom gas, bailout gas, decompression gas and travel gas. In the simplest case these may all be the same gas.


Gas quantities for the planned profile

Gas consumption depends on the ambient pressure, the breathing rate, and the duration of the dive sector under those conditions. Ambient pressure is a direct function of the depth. It is atmospheric pressure at the surface, plus hydrostatic pressure, at 1 bar per 10 m depth. Gases quantities will be calculated for bottom gas, bailout gas, decompression gas and travel gas as may be applicable, and each different gas must be carried in one or more dedicated cylinders.


Gas quantities for contingencies

The basic problem with estimating a gas allowance for contingencies is to decide what contingencies to allow for. This is addressed in the
risk assessment Broadly speaking, a risk assessment is the combined effort of: # identifying and analyzing potential (future) events that may negatively impact individuals, assets, and/or the environment (i.e. hazard analysis); and # making judgments "on the to ...
for the planned dive. A commonly considered contingency is to share gas with another diver from the point in the dive where the maximum time is needed to reach the surface or other place where more gas is available. It is likely that both divers will have a higher than normal RMV during an assisted ascent as it is a stressful situation, and it is prudent to take this into account. The values should be chosen according to recommendations of the code of practice in use or the training agency, but if a higher value is chosen to take into account personal experience, it is unlikely that anyone would object. Recreational divers may have the discretion to use RMV values of their own choice, based on personal experience and informed acceptance of risk. The procedure is identical to that for any other multi-sector gas consumption calculation, except that two divers are involved, doubling the effective RMV. To check whether the bail-out cylinder has adequate gas (for one diver) in case of an emergency at the planned depth, critical pressure should be calculated based on the planned profile and should allow change-over, ascent and all planned decompression.


Drop cylinders

When considering gas redundancy for stage drop cylinders, it may be assumed that one drop cylinder may not be available, so the others must suffice for the whole team to get to the next place where gas is available. By the rule of thirds system the gas in stage cylinders is managed in the same way as the primary supply, whether the primary is carried as back gas or sidemounted. A third of the gas in the stage cylinder is used before the drop, leaving two thirds in the cylinder, the minimum amount for two divers to exit on one cylinder. The cylinder may be carried a few minutes beyond the point at which the first third was used, but is not breathed for this extra distance, to conserve the gas for the return, as this allows it to be reached a bit earlier if one diver loses all gas at the end of the next stage when gas supply is at critical pressure. If all goes to plan, the divers will surface with stages and primary cylinders each containing about one third of the original content. A different option is the "half + 15 bar" (half + 200 psi) method, in which the contingency gas for the stage is carried in the primary cylinders. Some divers consider this method to be the most conservative when multi-staging. If all goes to plan when using this method, the divers surface with stages nearly empty, but with all the contingency gas still in their primary cylinders. With a single stage, this means the primaries will still be about half-full.


Gas matching

Gas matching is the calculation of reserve and turn pressures for divers using different cylinder volumes or with different gas consumption rates on the same dive, allowing each diver to ensure that sufficient gas is retained to allow for foreseeable contingencies where divers may need to share gas, based on each diver's cylinder volumes, and both divers' individual gas consumption rates.


Gas quantities for rebreathers

At shallow depths, a diver using open-circuit breathing apparatus typically only uses about a quarter of the oxygen in the air that is breathed in, which is about 4 to 5% of the inspired volume. The remaining oxygen is exhaled along with
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and carbon dioxide – about 95% of the volume. As the diver goes deeper, and the mass of gas in a breath increases proportionally to the ambient pressure, much the same mass of oxygen is used for the same work rate, which represents an increasingly smaller fraction of the inhaled gas. Since only a small part of the oxygen, and virtually none of the inert gas is consumed, every exhaled breath from an open-circuit scuba set represents at least 95% wasted potentially useful gas volume, which has to be replaced from the breathing gas supply. A rebreather retains most of the exhaled gas for re-use and does not discharge it immediately to the surroundings. The inert gas and unused oxygen is kept for reuse, and the rebreather adds gas to replace the oxygen that was consumed, and removes the carbon dioxide. Thus, the gas recirculated in the rebreather remains breathable and supports life and the diver needs only to carry a fraction of the gas that would be needed for an open-circuit system. The saving is proportional to the ambient pressure, so is greater for deeper dives, and is particularly significant when expensive mixtures containing helium are used as the inert gas diluent. The rebreather also adds gas to compensate for compression when dive depth increases, and vents gas to prevent overexpansion when depth decreases. In most cases, two gases will be used in a closed circuit mixed gas rebreather. Oxygen, and a diluent suitable for bailout and diluent flush at the maximum planned depth of the dive. Off-board bailout on open circuit generally requires larger volumes if there is planned decompression or an overhead, and the method of calculation of quantities and choice of gases is very similar to open circuit.


Rebreather bailout options

A rebreather cannot be used to donate gas to another diver, so bailout equipment is generally carried by each diver for their own use, though team redundancy considerations may allow a lesser amount of bailout equipment than would be necessary if all the divers had to bail out at the same time, which, while possible, is highly unlikely. However, statistically reliable failure rates are generally not available, so the risk cannot be accurately calculated. Open circuit bailout is as bulky as for open circuit diving, and for long penetrations, a bailout rebreather may be more practical. This must be kept ready for immediate use throughout the dive.


Storage and transportation of cylinders


Handling

Cylinders should not be left standing unattended unless secured so that they can not fall in reasonably foreseeable circumstances as an impact could damage the cylinder valve mechanism, and conceivably fracture the valve at the neck threads. This is more likely with taper thread valves, and when it happens most of the energy of the compressed gas is released within a second, and can accelerate the cylinder to speeds which can cause severe injury or damage to the surroundings.


Long-term storage

Breathing quality gases do not normally deteriorate during storage in steel or aluminium cylinders. Provided there is insufficient water content to promote internal corrosion, the stored gas will remain unchanged for years if stored at temperatures within the allowed working range for the cylinder, usually below 65 °C. If there is any doubt, a check of oxygen fraction will indicate whether the gas has changed (the other components are inert). Any unusual smells would be an indication that the cylinder or gas was contaminated at the time of filling. However some authorities recommend releasing most of the contents and storing cylinders over long periodswith a small positive pressure. Aluminium cylinders have a low tolerance for heat, and a cylinder containing less than may lose sufficient strength in a fire to explode before the internal pressure rises enough to rupture the bursting disc, so storing aluminium cylinders with a bursting disc has a lower explosion risk in case of fire if stored either full, as the disc will burst before the aluminium is severely weakened, or nearly empty, so the pressure cannot rise too high when heated.


Transportation

Diving cylinders are classified by the UN as dangerous goods for transportation purposes (US: Hazardous materials). Selecting the
proper shipping name Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
(well known by the abbreviation PSN) is a way to help ensure that the dangerous goods offered for transport accurately represent the hazards. Legislation and restrictions regarding the transportation of compressed gas cylinders are complicated and can vary significantly by mode of transport and jurisdiction.


Pre-dive checks

Pre-dive checks are recognised as a useful tool to reduce risk of equipment failure during dives, and are usually stipulated by professional diving operations manuals. Recreational divers are not obliged to do them, but studies have indicated that the correct performance of pre-dive checks result in a significant reduction in the rate of recreational diving incidents triggered by equipment malfunction, and that the use of a written checklist results in a higher incidence of correctly performed checks. Several of the open circuit pre-dive checks involve the breathing gas supply. These include: *Adequate supply of breathing gases. (cylinder volume and pressure checks) *Suitable type and quality of breathing gas. (correctly and unambiguously identified if applicable) *Cylinders mounted securely and, where applicable, accessibly. *Valves opened or closed as planned, accessible if applicable. *Demand valves functioning correctly. (work of breathing low, no leaks or free-flows) *Hose routing correct, no kinks or hoses trapped under other equipment, pressure gauges accessible. *Inflation gas hoses connected, and inflation valves functioning correctly. *Demand valves secured correctly where applicable. *Dive computer gas settings for active and alternative gases correct. For rebreathers the pre-dive checklist is longer, and in addition to most of the open-circuit checks, may include: *Positive and negative pressure leak tests of the breathing loop *Oxygen partial pressure within set-points *Oxygen monitoring functioning and valve controls operating correctly. *Prebreathing has been done to ensure scrubber function. (There is some question as to whether this test is reliable)


Monitoring gas during a dive

The diver monitors the pressure remaining in the cylinders to ensure that the remaining gas supply is sufficient to complete the dive safely. This is usually done by observing the display on the submersible pressure gauge of each cylinder, but can also be done using pressure transducers on the cylinders which display on the dive computer. The observed values are compared with the critical values from the dive plan, and are one of the values used to decide the turn-around point of the dive. After a gas switch it is customary to check that the pressure in the newly accessed cylinder is falling as expected. It is also common practice to close the cylinder valves of side-mounted or sling-mounted cylinders that are not in use to reduce the risk of losing gas by an unobserved leak or sudden free-flow. This does put the regulator at a greater risk of flooding by back-flow of water into the low-pressure hose, but that is an inconvenience requiring servicing after the dive, whereas a major free-flow during the dive could put the diver at immediate severe risk of running out of gas, and could be sufficient reason to terminate the dive. Another aspect of gas monitoring during a dive is remaining aware of the gas status of the other members of the diving group. Foe most divers this is the buddy pair. For technical divers this may be a three diver team, and for the
dive leader Dive leader is the title of an internationally recognised recreational diving certification. The training standard describes the minimum requirements for dive leader training and certification for recreational scuba divers in international standar ...
of a recreational group, it may be the entire group. There are
hand signals Hand signals are given by cyclists and some motorists to indicate their intentions to other traffic. Under the Vienna Convention on Traffic, bicycles are considered 'vehicles' and cyclists are considered 'drivers', a naming convention reflec ...
specifically for this purpose. Partial pressure of oxygen in closed circuit rebreathers is monitored at frequent intervals, particularly at the start of the dive, during descent, where transient increases due to compression may occur, and during ascent, where the risk of hypoxia is highest. On electronically controlled CCRs this is done by the control system, and the diver is normally warned of divergence from the set point by an alarm. The diver may need to manually adjust the mixture or decrease the rate of depth change to help the injection system to correct the mix. On manually controlled CCRs the diver also has to adjust the oxygen partial pressure by adding oxygen or flushing with diluent. On open circuit, the partial pressure is not measured directly, and is inferred from the depth and the oxygen fraction of the breathing mixture. The dive computer will keep track of the partial pressure based on the input value from the diver identifying the gas mixture. If the diver selects the wrong gas, the decompression obligation will be miscalculated. When breathing gas is switched it is usually necessary for the diver to manually set the new gas as active. Carbon dioxide buildup is a severe hazard, and as of 2022 most rebreathers do not have electronic carbon dioxide monitoring. The diver must look out for indications of this problem at all times. The technology available is carbon dioxide partial pressure measurement after the scrubber, which when working correctly, will inform the diver of high partial pressure shortly before it is necessary to bail out, and temperature stick sensors which indicate the position along the sensor in the absorbent canister at which the exothermic absorption reaction is occurring, giving an indication of proportionately how much scrubber life is left. The displays for these sensors are usually incorporated in the control system display, with warning signals.


Gas switching

Deep technical diving usually involves the use of several gas mixtures during the course of the dive. There will be a mixture known as the ''
bottom gas Scuba gas planning is the aspect of dive planning and of Scuba gas management, gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profil ...
'', which is optimised for limiting inert gas narcosis and oxygen toxicity during the deep sector of the dive. This is generally the mixture which is needed in the largest amount for open circuit diving, as the consumption rate will be greatest at maximum depth. The oxygen fraction of the bottom gas suitable for a dive deeper than about will not have sufficient oxygen to reliably support consciousness at the surface, so a ''
travel gas Scuba gas planning is the aspect of dive planning and of Scuba gas management, gas management which deals with the calculation or estimation of the amounts and mixtures of gases to be used for a planned dive. It may assume that the dive profil ...
'' must be carried to start the dive and get down to the depth at which the bottom gas is appropriate. There is generally a large overlap of depths where either gas can be used, and the choice of the point at which the switch will be made depends on considerations of cumulative toxicity, narcosis and gas consumption logistics specific to the planned dive profile. By some definitions the use of gas switching differentiates between a recreational and a technical dive. During ascent, there will be a depth at which the diver can switch to a gas with a higher oxygen fraction, which will also accelerate decompression. If the travel gas is suitable, it can be used for decompression too. Additional oxygen rich
decompression gas There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures. Decompression o ...
mixtures may be selected to optimise decompression times at shallower depths. These will usually be selected as soon as the partial pressure of oxygen is acceptable, to minimise required decompression, and there may be more than one such mixture depending on the planned decompression schedule. The shallowest stops may be done breathing pure oxygen. During prolonged decompression at high oxygen partial pressures, it may be advisable to take what is known as ''air breaks'', where the diver switches back to a low oxygen fraction gas (usually bottom gas or travel gas) for a short period (usually about 5 minutes) to reduce the risk of developing oxygen toxicity symptoms, before continuing with the high oxygen fraction accelerated decompression. These multiple gas switches require the diver to select and use the correct demand valve and cylinder for each switch. An error of selection could compromise the decompression, or result in a loss of consciousness due to oxygen toxicity. Gas switching can also complicate the use of decompression computers. The diver is faced with a problem of optimising for gas volume carried, number of different gases carried, depths at which switches can be made, bottom time, decompression time, gases available for emergency use, and at which depths they become available, both for themself and other members of the team, while using available cylinders and remaining able to manage the cylinders during the dive. This problem can be simplified if staging the cylinders is possible. This is the practice of leaving a cylinder at a point on the return route where it can be picked up and used, possibly depositing the previously used cylinder, which will be retrieved later, or having a support diver supply additional gas. These strategies rely on the diver being reliably able to get to the staged gas supply. The staged cylinders are usually clipped off to the
distance line A distance line, penetration line, cave line or guide line is an item of diving equipment used by scuba divers as a means of returning to a safe starting point in conditions of low visibility, water currents or where pilotage is difficult. They ...
or
shotline A diving shot line, shot line, or diving shot, a type of downline or descending line (US Navy), is an item of diving equipment consisting of a ballast weight (the shot), a line and a buoy. The weight is dropped on the dive site. The ...
to make them easier to find. Scuba gas switching is almost exclusively done by removing the second stage mouthpiece of the first gas from the mouth, inserting the mouthpiece of the selected gas, opening the cylinder valve to allow flow, and stowing the original regulator second stage. This procedure has been determined by trial and error to be safer than using a valved manifold to select the gas, as the consequences of mistakenly using an inappropriate gas for the depth can be fatal, or may compromise decompression and increase the risk of decompression sickness. Requiring the diver to manually open the cylinder valve to provide flow facilitates checking that the demand valve is connected to the correct cylinder before the diver can breathe from it, though it does slightly increase task loading for a short period. Using a different regulator for each gas also makes failure of a single regulator unlikely to have fatal consequences. Valved manifolds (bailout blocks) are used for surface supply bailout to scuba, but in that application the bailout gas mixture is usually the same as the main gas supply, and is chosen to be suitable for the maximum planned depth of the dive.


Emergency provision of gas

Emergency air sharing may involve sharing a single demand valve, or one diver providing a secondary air source to another. The gas may be from the same scuba set or from a separate cylinder. The preferred technique of air sharing is donation of a demand valve that is not needed by the donor. The standard approach is "octopus donation" in which the buddy offers the secondary "octopus" demand valve to the diver in trouble, although this is not universal. A variation on this approach is for the buddy to offer their primary demand valve to the diver in trouble, while switching to the octopus. The reasoning is that this is more likely to calm a diver in trouble, and the gas will be appropriate for the depth. Alternatively, two divers can share a single demand valve. This is known as
buddy breathing Buddy breathing is a rescue technique used in scuba diving "out of gas" emergencies, when two divers share one demand valve, alternately breathing from it. Techniques have been developed for buddy breathing from both twin-hose and single hose regu ...
. Buddy breathing is no longer taught as widely, although some groups still teach it. The standard buddy breathing technique is for the divers to alternately breathe from the demand valve, each taking two breaths, although since the receiver is likely to initially be out of breath, he/she may need a few more breaths to stabilise. Once air sharing has been established, the dive terminates, unless the underlying problem can be resolved. Assisted ascents using a secondary demand valve are simpler than buddy breathing ascents, the risk to both divers is lower, gas consumption may be less, and this skill is quicker to learn. Another type of emergency gas provision is using gas from a cylinder when the regulator has failed, This can occur in any one of several ways. If the cylinder has been emptied by a free flow there is no gas to be used, but if the valve has been closed before the gas is all blown off, there are some ways for a skilled diver to make use of it if it is really needed. In most cases this should not be necessary, as effective gas management should ensure sufficient gas to surface safely if any single failure occurs. *A working second stage can be swapped for one that has failed, while the cylinder valve is closed, if the diver has a suitable spanner (wrench). This is relatively easy and safe, and is usually the best option. The hose connections are usually compatible. *A regulator that cannot be prevented from free-flowing can be controlled manually by opening and closing the cylinder valve for each breath. *A regulator that is locked closed at the first stage can be removed, and it is possible to breathe directly, though inefficiently from the pillar valve, controlling the flow by adjusting the flow by hand. This is not safe, but it is safer than drowning, and may be safer than breathing a gas which is unsafe at that depth, or surfacing having missed a large amount of obligatory decompression. *A working regulator from an empty cylinder, or one with gas that is unsuitable for the depth can be switched to the cylinder underwater. A scuba regulator can be switched from one cylinder to another underwater in an emergency, and will usually work correctly after such a switch, after any water that leaked into it during the changeout has been purged, but doing this contaminates the internal components and the regulator should be serviced as soon as reasonably possible after the dive, to prevent possible damage, particularly if seawater gets into the pressure gauge, which is difficult to rinse internally.


References

{{underwater diving, divsaf Underwater diving procedures