Sphygmomanometers
   HOME

TheInfoList



OR:

A sphygmomanometer ( ), a blood pressure monitor, or blood pressure gauge, is a device used to measure
blood pressure Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" r ...
, composed of an inflatable cuff to collapse and then release the artery under the cuff in a controlled manner, and a
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
or aneroid manometer to measure the pressure. Manual sphygmomanometers are used with a
stethoscope The stethoscope is a medical device for auscultation, or listening to internal sounds of an animal or human body. It typically has a small disc-shaped resonator that is placed against the skin, and one or two tubes connected to two earpieces. ...
when using the auscultatory technique. A sphygmomanometer consists of an inflatable cuff, a measuring unit (the mercury manometer, or aneroid gauge), and a mechanism for inflation which may be a manually operated bulb and valve or a pump operated electrically.


Types

Both manual and digital meters are currently employed, with different trade-offs in accuracy versus convenience.


Manual

A stethoscope is required for
auscultation Auscultation (based on the Latin verb ''auscultare'' "to listen") is listening to the internal sounds of the body, usually using a stethoscope. Auscultation is performed for the purposes of examining the circulatory and respiratory systems (hea ...
( see below). Manual meters are best used by trained practitioners, and, while it is possible to obtain a basic reading through palpation alone, this yields only the systolic pressure. * Mercury sphygmomanometers are considered the gold standard. They indicate pressure with a column of mercury, which does not require recalibration. Because of their accuracy, they are often used in clinical trials of drugs and in clinical evaluations of high-risk patients, including pregnant women. A frequently used wall mounted mercury sphygmomanometer is also known as a Baumanometer. * Aneroid sphygmomanometers (mechanical types with a dial) are in common use; they may require calibration checks, unlike mercury manometers. Aneroid sphygmomanometers are considered safer than mercury sphygmomanometers, although inexpensive ones are less accurate. A major cause of departure from calibration is mechanical jarring. Aneroids mounted on walls or stands are not susceptible to this particular problem.


Digital

Digital Digital usually refers to something using discrete digits, often binary digits. Technology and computing Hardware *Digital electronics, electronic circuits which operate using digital signals **Digital camera, which captures and stores digital i ...
meters employ oscillometric measurements and electronic calculations rather than auscultation. They may use manual or automatic inflation, but both types are electronic, easy to operate without training, and can be used in noisy environments. They measure
systolic Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. The term originates, via New Latin, from Ancient Greek (''sustolē''), from (''sustéllein'' 'to contract'; from ''sun ...
and diastolic pressures by oscillometric detection, employing either deformable membranes that are measured using differential capacitance, or differential piezoresistance, and they include a microprocessor.Oscillometry, Explanation of oscillometric detection in Medical Electronics, N Townsend, p48-51
/ref> They measure mean blood pressure and pulse rate, while systolic and diastolic pressures are obtained less accurately than with manual meters, and calibration is also a concern. Digital oscillometric monitors may not be advisable for some patients, such as those with arteriosclerosis,
arrhythmia Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults ...
, preeclampsia, '' pulsus alternans'', and ''
pulsus paradoxus Pulsus paradoxus, also paradoxic pulse or paradoxical pulse, is an abnormally large decrease in stroke volume, systolic blood pressure and pulse wave amplitude during inspiration. The normal fall in pressure is less than 10 mmHg. When the drop i ...
'', as their calculations may not correct for these conditions, and in these cases, an analog sphygmomanometer is preferable when used by a trained person. Digital instruments may use a cuff placed, in order of accuracy and inverse order of portability and convenience, around the upper arm, the wrist, or a finger. Recently, a group of researchers at Michigan State University developed a smartphone based device that uses oscillometry to estimate blood pressure. The oscillometric method of detection used gives blood pressure readings that differ from those determined by auscultation, and vary according to many factors, such as pulse pressure, heart rate and
arterial stiffness Arterial stiffness occurs as a consequence of biological aging and arteriosclerosis. Inflammation plays a major role in arteriosclerosis development, and consequently it is a major contributor in large arteries stiffening. Increased arterial stiff ...
, although some instruments are claimed also to measure arterial stiffness, and some can detect irregular heartbeats.


Operation

In humans, the cuff is normally placed smoothly and snugly around an upper arm, at roughly the same vertical height as the heart while the subject is seated with the arm supported. Other sites of placement depend on species and may include the flipper or tail. It is essential that the correct size of cuff is selected for the patient. Too small a cuff results in too high a pressure, while too large a cuff results in too low a pressure. For clinical measurements it is usual to measure and record both arms in the initial consultation to determine if the pressure is significantly higher in one arm than the other. A difference of 10 mmHg may be a sign of
coarctation of the aorta Coarctation of the aorta (CoA or CoAo), also called aortic narrowing, is a congenital condition whereby the aorta is narrow, usually in the area where the ductus arteriosus (ligamentum arteriosum after regression) inserts. The word ''coarctation' ...
. If the arms read differently, the higher reading arm would be used for later readings. The cuff is inflated until the artery is completely occluded. With a manual instrument, listening with a
stethoscope The stethoscope is a medical device for auscultation, or listening to internal sounds of an animal or human body. It typically has a small disc-shaped resonator that is placed against the skin, and one or two tubes connected to two earpieces. ...
to the
brachial artery The brachial artery is the major blood vessel of the (upper) arm. It is the continuation of the axillary artery beyond the lower margin of teres major muscle. It continues down the ventral surface of the arm until it reaches the cubital fossa ...
, the examiner slowly releases the pressure in the cuff at a rate of approximately 2 mmHg per heart beat. As the pressure in the cuffs falls, a "whooshing" or pounding sound is heard (see Korotkoff sounds) when blood flow first starts again in the artery. The pressure at which this sound began is noted and recorded as the systolic blood pressure. The cuff pressure is further released until the sound can no longer be heard. This is recorded as the
diastolic blood pressure Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" r ...
. In noisy environments where auscultation is impossible (such as the scenes often encountered in
emergency medicine Emergency medicine is the medical speciality concerned with the care of illnesses or injuries requiring immediate medical attention. Emergency physicians (often called “ER doctors” in the United States) continuously learn to care for unsche ...
), systolic blood pressure alone may be read by releasing the pressure until a radial pulse is palpated (felt). In veterinary medicine, auscultation is rarely of use, and palpation or visualization of pulse distal to the sphygmomanometer is used to detect systolic pressure. Digital instruments use a cuff which may be placed, according to the instrument, around the upper arm, wrist, or a finger, in all cases elevated to the same height as the heart. They inflate the cuff and gradually reduce the pressure in the same way as a manual meter, and measure blood pressures by the oscillometric method.


Significance

By observing the mercury in the column, or the aneroid gauge pointer, while releasing the air pressure with a control valve, the operator notes the values of the blood pressure in mmHg. The peak pressure in the arteries during the cardiac cycle is the systolic pressure, and the lowest pressure (at the resting phase of the cardiac cycle) is the diastolic pressure. A stethoscope, applied lightly over the artery being measured, is used in the auscultatory method. Systolic pressure (first phase) is identified with the first of the continuous Korotkoff sounds. Diastolic pressure is identified at the moment the Korotkoff sounds disappear (fifth phase). Measurement of the blood pressure is carried out in the diagnosis and treatment of
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
(high blood pressure), and in many other healthcare scenarios.


History

The sphygmomanometer was invented by Samuel Siegfried Karl Ritter von Basch in the year 1881. Scipione Riva-Rocci introduced a more easily used version in 1896. In 1901, pioneering neurosurgeon Dr. Harvey Cushing brought an example of Riva-Rocci's device to the US, modernized it and popularized it within the medical community. Further improvement came in 1905 when Russian physician
Nikolai Korotkov Nikolai Sergeyevich Korotkov (also romanized Korotkoff; russian: Никола́й Серге́евич Коротко́в) ( – 14 March 1920) was a Russian Empire surgeon, a pioneer of 20th-century vascular surgery, and the inventor of auscul ...
included diastolic blood pressure measurement following his discovery of "Korotkoff sounds." William A. Baum invented the Baumanometer brand in 1916, while working for The Life Extension Institute which performed insurance and employment physicals. In 1981 the first fully automated oscillometric blood pressure cuff was invented by Donald Nunn.


Etymology

The word ''sphygmomanometer'' uses the
combining form Neoclassical compounds are compound words composed from combining forms (which act as affixes or stems) derived from classical Latin or ancient Greek roots. New Latin comprises many such words and is a substantial component of the technical an ...
of '' sphygmo-'' + '' manometer''. The roots involved are as follows: Greek ''sphygmos'' "pulse", plus the scientific term '' manometer'' (from French ''manomètre''), i.e. "pressure meter", itself coined from ''manos'' "thin, sparse", and ''metron'' "measure"., , . Most sphygmomanometers were mechanical gauges with dial faces, or mercury columns, during most of the 20th century. Since the advent of electronic medical devices, names such as "meter" and "monitor" can also apply, as devices can automatically monitor blood pressure on an ongoing basis.


References


External links

* * * * {{US patent reference , number = 6752764 , inventor = Man S. Oh , title = Pocket sphygmomanometer , y = 2004, m = 06, d = 22 Medical equipment Pressure gauges Physiological instruments Blood pressure 1881 introductions 19th-century inventions Austrian inventions