In
pure and
applied mathematics
Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a ...
, particularly
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and
computer graphics
Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. ...
and their applications, a spherical basis is the
basis used to express
spherical tensors. The spherical basis closely relates to the description of
angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
in quantum mechanics and
spherical harmonic
In mathematics and Outline of physical science, physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The tabl ...
functions.
While
spherical polar coordinates
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are
* the radial distance along the line connecting the point to a fixed point ...
are one
orthogonal coordinate system
In mathematics, orthogonal coordinates are defined as a set of coordinates \mathbf q = (q^1, q^2, \dots, q^d) in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate sur ...
for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed from the
standard basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors, each of whose components are all zero, except one that equals 1. For exampl ...
and use
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s.
In three dimensions
A vector A in 3D
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
can be expressed in the familiar
Cartesian coordinate system
In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
in the
standard basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors, each of whose components are all zero, except one that equals 1. For exampl ...
e
''x'', e
''y'', e
''z'', and
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
''A
x'', ''A
y'', ''A
z'':
or any other
coordinate system
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
with associated
basis set of vectors. From this extend the scalars to allow multiplication by complex numbers, so that we are now working in
rather than
.
Basis definition
In the spherical bases denoted e
+, e
−, e
0, and associated coordinates with respect to this basis, denoted ''A''
+, ''A''
−, ''A''
0, the vector A is:
where the spherical basis vectors can be defined in terms of the Cartesian basis using
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
-valued coefficients in the ''xy'' plane:
in which
denotes the
imaginary unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
, and one normal to the plane in the ''z'' direction:
:
The inverse relations are:
Commutator definition
While giving a basis in a 3-dimensional space is a valid definition for a spherical tensor, it only covers the case for when the rank
is 1. For higher ranks, one may use either the commutator, or rotation definition of a spherical tensor. The commutator definition is given below, any operator
that satisfies the following relations is a spherical tensor:
Rotation definition
Analogously to how the
spherical harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics co ...
transform under a rotation, a general spherical tensor transforms as follows, when the states transform under the
unitary
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semigr ...
Wigner D-matrix
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conju ...
, where is a (3×3 rotation) group element in
SO(3)
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition.
By definition, a rotation about the origin is a ...
. That is, these matrices represent the rotation group elements. With the help of its
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
, one can show these two definitions are equivalent.
:
Coordinate vectors
For the spherical basis, the
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
are complex-valued numbers ''A''
+, ''A''
0, ''A''
−, and can be found by substitution of () into (), or directly calculated from the
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
, ():
:
with inverse relations:
In general, for two vectors with complex coefficients in the same real-valued orthonormal basis e
''i'', with the property e
''i''·e
''j'' = ''δ
ij'', the
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
is:
where · is the usual
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
and the
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
* must be used to keep the
magnitude (or "norm") of the vector
positive definite.
Properties (three dimensions)
Orthonormality
The spherical basis is an
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
, since the
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
, () of every pair vanishes meaning the basis vectors are all mutually
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
:
:
and each basis vector is a
unit vector
In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
:
:
hence the need for the normalizing factors of
.
Change of basis matrix
The defining relations () can be summarized by a
transformation matrix
In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then there exists an m \times n matrix A, called the transfo ...
U:
:
with inverse:
:
It can be seen that U is a
unitary matrix
In linear algebra, an invertible complex square matrix is unitary if its matrix inverse equals its conjugate transpose , that is, if
U^* U = UU^* = I,
where is the identity matrix.
In physics, especially in quantum mechanics, the conjugate ...
, in other words its
Hermitian conjugate
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule
:\langle Ax,y \rangle = \langle x,A^*y \rangle,
where \l ...
U
† (
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
and
matrix transpose
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations).
The tr ...
) is also the
inverse matrix U
−1.
For the coordinates:
:
and inverse:
:
Cross products
Taking
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
s of the spherical basis vectors, we find an obvious relation:
:
where ''q'' is a placeholder for +, −, 0, and two less obvious relations:
:
:
Inner product in the spherical basis
The inner product between two vectors A and B in the spherical basis follows from the above definition of the inner product:
:
See also
*
Wigner–Eckart theorem
The Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one ...
*
Wigner D matrix
*
3D rotation group
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space \R^3 under the operation of composition.
By definition, a rotation about the origin is ...
References
General
*
External links
{{Tensors
Image processing
Quantum mechanics
Condensed matter physics
Linear algebra
Tensors
Spherical geometry