Specific energy or massic energy is
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
per unit
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
. It is also sometimes called gravimetric energy density, which is not to be confused with
energy density
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or .
Often only the ''useful'' or extract ...
, which is defined as energy per unit volume. It is used to quantify, for example, stored
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
and other
thermodynamic properties
In thermodynamics, a physical property is any property that is measurable, and whose value describes a state of a physical system. Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's stat ...
of substances such as
specific internal energy
The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
,
specific enthalpy
Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant p ...
, specific
Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pr ...
, and specific
Helmholtz free energy
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal
In thermodynamics, an isotherma ...
. It may also be used for the
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
or
potential energy
In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Common types of potential energy include the gravitational potentia ...
of a body. Specific energy is an
intensive property
Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is on ...
, whereas energy and mass are
extensive properties
Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one ...
.
The
SI unit for specific energy is the
joule
The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
per
kilogram
The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
(J/kg). Other units still in use in some contexts are the
kilocalorie
The calorie is a unit of energy. For historical reasons, two main definitions of "calorie" are in wide use. The large calorie, food calorie, or kilogram calorie was originally defined as the amount of heat needed to raise the temperature of on ...
per gram (Cal/g or kcal/g), mostly in food-related topics,
watt hour
A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bil ...
s per kilogram in the field of batteries, and the
Imperial unit
The imperial system of units, imperial system or imperial units (also known as British Imperial or Exchequer Standards of 1826) is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed thro ...
BTU
The British thermal unit (BTU or Btu) is a unit of heat; it is defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit. It is also part of the United States customary units. The modern SI u ...
per
pound (Btu/lb), in some
engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
and applied technical fields.
[
Kenneth E. Heselton (2004)]
"Boiler Operator's Handbook"
Fairmont Press, 405 pages.
The concept of specific energy is related to but distinct from the notion of
molar energy
The joule per mole (symbol: J·mol−1 or J/mol) is the unit of energy per amount of substance in the International System of Units (SI), such that energy is measured in joules, and the amount of substance is measured in moles.
It is also an ...
in
chemistry
Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, that is energy per
mole
Mole (or Molé) may refer to:
Animals
* Mole (animal) or "true mole", mammals in the family Talpidae, found in Eurasia and North America
* Golden moles, southern African mammals in the family Chrysochloridae, similar to but unrelated to Talpida ...
of a substance, which uses units such as joules per mole, or the older but still widely used
calorie
The calorie is a unit of energy. For historical reasons, two main definitions of "calorie" are in wide use. The large calorie, food calorie, or kilogram calorie was originally defined as the amount of heat needed to raise the temperature of on ...
s per mole.
[
Jerzy Leszczynski (2011)]
"Handbook of Computational Chemistry"
Springer, 1430 pages.
Table of some non-SI conversions
The following table shows the factors for conversion to J/kg of some non-SI units:
For a table giving the specific energy of many different fuels as well as batteries, see the article
Energy density
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or .
Often only the ''useful'' or extract ...
.
Ionising radiation
For
ionising radiation
Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
, the
gray
Grey (more common in British English) or gray (more common in American English) is an intermediate color between black and white. It is a neutral or achromatic color, meaning literally that it is "without color", because it can be composed o ...
is the SI unit of specific energy absorbed by matter known as
absorbed dose
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmf ...
, from which the SI unit the
sievert
The sievert (symbol: SvNot be confused with the sverdrup or the svedberg, two non-SI units that sometimes use the same symbol.) is a unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizing radi ...
is calculated for the stochastic health effect on tissues, known as
dose equivalent
Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the ph ...
. The
International Committee for Weights and Measures
The General Conference on Weights and Measures (GCWM; french: Conférence générale des poids et mesures, CGPM) is the supreme authority of the International Bureau of Weights and Measures (BIPM), the intergovernmental organization established i ...
states: "In order to avoid any risk of confusion between the absorbed dose ''D'' and the
dose equivalent
Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the ph ...
''H'', the special names for the respective units should be used, that is, the name gray should be used instead of joules per kilogram for the unit of absorbed dose ''D'' and the name
sievert
The sievert (symbol: SvNot be confused with the sverdrup or the svedberg, two non-SI units that sometimes use the same symbol.) is a unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizing radi ...
instead of joules per kilogram for the unit of dose equivalent ''H''."
Energy density of food
Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in
kilojoule
The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied. ...
s or
food calorie
The calorie is a unit of energy. For historical reasons, two main definitions of "calorie" are in wide use. The large calorie, food calorie, or kilogram calorie was originally defined as the amount of heat needed to raise the temperature of on ...
s) by the serving size (usually in grams, milliliters or fluid ounces). Energy density is thus expressed in cal/g, kcal/g, J/g, kJ/g, cal/mL, kcal/mL, J/mL, or kJ/mL. The "calorie" commonly used in nutritional contexts is the kilocalorie (abbreviated "Cal" and sometimes called the "dietary calorie", "food calorie" or "Calorie" with a capital "C"). This is equivalent to a thousand calories (abbreviated "cal") or one kilocalorie (kcal). Because food energy is commonly measured in Calories, the energy density of food is commonly called "caloric density".
Energy density measures the energy released when the food is
metabolized
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
by a healthy organism when it ingests the food (see
food energy
Food energy is chemical energy that animals (including humans) derive from their food to sustain their metabolism, including their muscle, muscular activity.
Most animals derive most of their energy from aerobic respiration, namely combining the ...
for calculation) and the food is metabolized with oxygen, into waste products such as
carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
and water. Besides
alcohol
Alcohol most commonly refers to:
* Alcohol (chemistry), an organic compound in which a hydroxyl group is bound to a carbon atom
* Alcohol (drug), an intoxicant found in alcoholic drinks
Alcohol may also refer to:
Chemicals
* Ethanol, one of sev ...
the only sources of food energy are
carbohydrate
In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ma ...
s,
fat
In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food.
The term often refers spec ...
s and
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s, which make up ninety percent of the dry weight of food.
Therefore,
water
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
content is the most important factor in energy density. Carbohydrates provide four calories per gram (17 kJ/g), and proteins offer slightly less at 16kJ/g whereas fat provides nine calories per gram (38 kJ/g),
times as much energy. Fats contain more carbon-carbon and carbon-hydrogen bonds than carbohydrates or proteins and are therefore richer in energy. Foods that derive most of their energy from fat have a much higher energy density than those that derive most of their energy from carbohydrates or proteins, even if the water content is the same. Nutrients with a lower absorption, such as
fiber
Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
or
sugar alcohol
Sugar alcohols (also called polyhydric alcohols, polyalcohols, alditols or glycitols) are organic compounds, typically derived from sugars, containing one hydroxyl group (–OH) attached to each carbon atom. They are white, water-soluble solids ...
s, lower the energy density of foods as well. A moderate energy density would be 1.6 to 3 calories per gram (7–13 kJ/g); salmon, lean meat, and bread would fall in this category. High-energy foods would have more than three calories per gram and include crackers, cheese, dark chocolate, and peanuts.
Fuel
Energy density is sometimes useful for comparing fuels. For example,
liquid hydrogen
Liquid hydrogen (LH2 or LH2) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.
To exist as a liquid, H2 must be cooled below its critical point of 33 K. However, for it to be in a fully li ...
fuel has a higher specific energy (energy per unit mass) than
gasoline
Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic co ...
does, but a much lower volumetric energy density.
Astrodynamics
Specific mechanical energy
Specific mechanical energy is the mechanical energy of an object per unit of mass. Similar to mechanical energy, the specific mechanical energy of an object in an isolated system subject only to conservative forces will remain constant.
It is de ...
, rather than simply energy, is often used in
astrodynamics
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of ...
, because gravity changes the kinetic and potential specific energies of a vehicle in ways that are independent of the mass of the vehicle, consistent with the
conservation of energy
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
in a
Newtonian gravitational system.
The specific energy of an object such as a
meteoroid
A meteoroid () is a small rocky or metallic body in outer space.
Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than this are classified as micr ...
falling on the earth from outside the earth's gravitational well is at least one half the square of the
escape velocity
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
of 11.2 km/s. This comes to 63 MJ/kg (15 kcal/g, or 15 tonnes
TNT equivalent
TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. The is a unit of energy defined by that convention to be , which is the approximate energy released in the detonation of a m ...
per tonne).
Comet
A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
s have even more energy, typically moving with respect to the sun, when in our vicinity, at about the square root of two times the speed of the earth. This comes to 42 km/s, or a specific energy of 882 MJ/kg. The speed relative to the earth may be more or less, depending on direction. Since the speed of the earth around the sun is about 30 km/s, a comet's speed relative to the earth can range from 12 to 72 km/s, the latter corresponding to 2592 MJ/kg. If a comet with this speed fell to the earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the earth of about 2690 MJ/kg.
If the
Hale-Bopp comet (50 km in diameter) had hit Earth, it would have vaporized the oceans and sterilized the surface of Earth.
Miscellaneous
*
Kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
per unit mass: ''v''
2, where ''v'' is the speed (giving J/kg when ''v'' is in m/s). See also
kinetic energy per unit mass of projectiles.
*
Potential energy
In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Common types of potential energy include the gravitational potentia ...
with respect to gravity, close to earth, per unit mass: ''gh'', where ''g'' is the acceleration due to gravity (
standardized
Standardization or standardisation is the process of implementing and developing technical standards based on the consensus of different parties that include firms, users, interest groups, standards organizations and governments. Standardization ...
as ≈9.8 m/s
2) and ''h'' is the height above the reference level (giving J/kg when ''g'' is in m/s
2 and ''h'' is in m).
*
Heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
: energies per unit mass are
specific heat capacity
In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat t ...
times
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied o ...
difference, and
specific melting heat
In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a s ...
, and
specific heat of vaporization
See also
*
Energy density
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or .
Often only the ''useful'' or extract ...
, which has tables of specific energies of devices and materials
*
Specific power
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measuremen ...
*
Heat of combustion
The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it.
The ''calorific value'' is the total energy relea ...
*
Specific orbital energy
In the gravitational two-body problem, the specific orbital energy \varepsilon (or vis-viva energy) of two orbiting bodies is the constant sum of their mutual potential energy (\varepsilon_p) and their total kinetic energy (\varepsilon_k), divided ...
References
*
{{DEFAULTSORT:Specific Energy
Energy (physics)
Thermodynamic properties