Speaker diarisation (
or diarization) is the process of partitioning an audio stream containing human speech into homogeneous segments according to the identity of each speaker. It can enhance the readability of an
automatic speech transcription by structuring the audio stream into speaker turns and, when used together with
speaker recognition
Speaker recognition is the identification of a person from characteristics of voices. It is used to answer the question "Who is speaking?" The term voice recognition can refer to ''speaker recognition'' or speech recognition. Speaker verification ...
systems, by providing the speaker’s true identity. It is used to answer the question "who spoke when?"
Speaker diarisation is a combination of speaker segmentation and speaker clustering. The first aims at finding speaker change points in an audio stream. The second aims at grouping together speech segments on the basis of speaker characteristics.
With the increasing number of broadcasts, meeting recordings and voice mail collected every year, speaker diarisation has received much attention by the speech community, as is manifested by the specific evaluations devoted to it under the auspices of the
National Institute of Standards and Technology
The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
for telephone speech, broadcast news and meetings.
Main types of diarisation systems
In speaker diarisation one of the most popular methods is to use a
Gaussian mixture model
In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observatio ...
to model each of the speakers, and assign the corresponding frames for each speaker with the help of a
Hidden Markov Model
A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it X — with unobservable ("''hidden''") states. As part of the definition, HMM requires that there be an ob ...
. There are two main kinds of clustering scenario. The first one is by far the most popular and is called Bottom-Up. The algorithm starts in splitting the full audio content in a succession of clusters and progressively tries to merge the redundant clusters in order to reach a situation where each cluster corresponds to a real speaker. The second clustering strategy is calle
top-downand starts with one single cluster for all the audio data and tries to split it iteratively until reaching a number of clusters equal to the number of speakers.
A 2010 review can be found a
More recently, speaker diarisation is performed thanks to
Artificial neural network, neural networks and heavier
GPU
A graphics processing unit (GPU) is a specialized electronic circuit designed to manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded systems, mobil ...
computing made possible some more efficient diarisation algorithm.
Open source speaker diarisation software
There are some open source initiatives for speaker diarisation (in alphabetical order):
*
ALIZE Speaker Diarization (last repository update: July 2016; last release: February 2013, version: 3.0): ALIZE Diarization System, developed at the University Of Avignon, a release 2.0 is availabl
*
Audioseg (last repository update: May 2014; last release: January 2010, version: 1.2): AudioSeg is a toolkit dedicated to audio segmentation and classification of audio streams
*
pyannote.audio (last repository update: August 2022, last release: July 2022, version: 2.0): pyannote.audio is an open-source toolkit written in Python for speaker diarization
*
pyAudioAnalysis (last repository update: August 2018): Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Application
*
SHoUT (last update: December 2010; version: 0.3): SHoUT is a software package developed at the University of Twente to aid speech recognition research. SHoUT is a Dutch acronym for ''Speech Recognition Research at the University of Twente''
SpkDiarization(last release: September 2013, version: 8.4.1): LIUM_SpkDiarization too
References
Bibliography
*
*
{{DEFAULTSORT:Speaker diarisation
Speech recognition
Speech processing