Soundwall
   HOME

TheInfoList



OR:

A noise barrier (also called a soundwall, noise wall, sound berm, sound barrier, or acoustical barrier) is an exterior structure designed to protect inhabitants of sensitive land use areas from noise pollution. Noise barriers are the most effective method of mitigating roadway, railway, and industrial noise sources – other than cessation of the source activity or use of source controls. In the case of surface transportation noise, other methods of reducing the source noise intensity include encouraging the use of hybrid and
electric vehicle An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes cha ...
s, improving automobile aerodynamics and tire design, and choosing low-noise paving material. Extensive use of noise barriers began in the United States after
noise regulation Noise regulation includes statutes or guidelines relating to sound transmission established by national, state or provincial and municipal levels of government. After the watershed passage of the United States Noise Control Act of 1972,U.S. Noise ...
s were introduced in the early 1970s.


History

Noise barriers have been built in the United States since the mid-twentieth century, when vehicular traffic burgeoned. I-680 in Milpitas, California was the first noise barrier. In the late 1960s, analytic acoustical technology emerged to mathematically evaluate the efficacy of a noise barrier design adjacent to a specific roadway. By the 1990s, noise barriers that included use of transparent materials were being designed in Denmark and other western European countries. The best of these early computer models considered the effects of roadway geometry, topography, vehicle volumes, vehicle speeds, truck mix,
road surface A road surface (British English), or pavement (American English), is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, hoggin, cobbles ...
type, and micro- meteorology. Several U.S. research groups developed variations of the computer modeling techniques:
Caltrans The California Department of Transportation (Caltrans) is an Executive (government), executive department of the U.S. state of California. The department is part of the Government of California#State agencies, cabinet-level California State Tran ...
Headquarters in Sacramento, California; the ESL Inc. group in
Sunnyvale, California Sunnyvale () is a city located in the Santa Clara Valley in northwest Santa Clara County in the U.S. state of California. Sunnyvale lies along the historic El Camino Real and Highway 101 and is bordered by portions of San Jose to the nort ...
; the Bolt, Beranek and Newman group in Cambridge, Massachusetts, and a research team at the University of Florida. Possibly the earliest published work that scientifically designed a specific noise barrier was the study for the Foothill Expressway in Los Altos, California. Numerous case studies across the U.S. soon addressed dozens of different existing and planned highways. Most were commissioned by state highway departments and conducted by one of the four research groups mentioned above. The U.S. National Environmental Policy Act, enacted in 1970, effectively mandated the quantitative analysis of noise pollution from every Federal-Aid Highway Act Project in the country, propelling noise barrier model development and application. With passage of the Noise Control Act of 1972, demand for noise barrier design soared from a host of
noise regulation Noise regulation includes statutes or guidelines relating to sound transmission established by national, state or provincial and municipal levels of government. After the watershed passage of the United States Noise Control Act of 1972,U.S. Noise ...
spinoff. By the late 1970s, more than a dozen research groups in the U.S. were applying similar computer modeling technology and addressing at least 200 different locations for noise barriers each year. , this technology is considered a standard in the evaluation of noise pollution from highways. The nature and accuracy of the computer models used is nearly identical to the original 1970s versions of the technology.


Design

The acoustical science of noise barrier design is based upon treating an airway or railway as a line source. The theory is based upon blockage of sound ray travel toward a particular receptor; however,
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
of sound must be addressed. Sound waves bend (downward) when they pass an edge, such as the apex of a noise barrier. Barriers that block line of sight of a highway or other source will therefore block more sound. Further complicating matters is the phenomenon of refraction, the bending of sound rays in the presence of an inhomogeneous
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
. Wind shear and thermocline produce such inhomogeneities. The sound sources modeled must include engine noise, tire noise, and aerodynamic noise, all of which vary by vehicle type and speed. The noise barrier may be constructed on private land, on a public right-of-way, or on other public land. Because sound levels are measured using a
logarithmic scale A logarithmic scale (or log scale) is a way of displaying numerical data over a very wide range of values in a compact way—typically the largest numbers in the data are hundreds or even thousands of times larger than the smallest numbers. Such a ...
, a reduction of nine
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a po ...
s is equivalent to elimination of approximately 86 percent of the unwanted sound power.


Materials

Several different materials may be used for sound barriers. These materials can include masonry, earthwork (such as earth berm), steel, concrete, wood, plastics, insulating wool, or composites. Walls that are made of absorptive material mitigate sound differently than hard surfaces. It is also possible to make noise barriers with active materials such as solar
photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially us ...
panels to generate electricity while also reducing traffic noise. A wall with porous surface material and sound-dampening content material can be absorptive where little or no noise is reflected back towards the source or elsewhere. Hard surfaces such as masonry or concrete are considered to be reflective where most of the noise is reflected back towards the noise source and beyond. Noise barriers can be effective tools for noise pollution abatement, but certain locations and topographies are not suitable for use of noise barriers. Cost and aesthetics also play a role in the choice of noise barriers. In some cases, a roadway is surrounded by a noise abatement structure or dug into a tunnel using the cut-and-cover method.


Disadvantages

Potential disadvantages of noise barriers include: * Blocked vision for motorists and rail passengers. Glass elements in noise screens can reduce visual obstruction, but require regular cleaning * Aesthetic impact on land- and townscape * Tendency to get sprayed on with graffiti * Creation of spaces hidden from view and social control (e.g. at railway stations) * High bird mortality (glass collisions) LSW Graffiti wm.jpg, Noise abatement walls often block rail passengers' or road users' view and attract graffiti. Geluidscherm Overschie.jpg, This noise abatement wall in the Netherlands has a transparent section at the driver's eye-level to reduce the visual impact for road users. Rieder 360° - die niedrige Lärmschutzwand (3).jpg, Low walls close to the track avoid optical impact.


Effects on air pollution

Roadside noise barriers have been shown to reduce the near-road air pollution concentration levels. Within 15–50 m from the roadside, air pollution concentration levels at the lee side of the noise barriers may be reduced by up to 50% compared to open road values. Noise barriers force the pollution plumes coming from the road to move up and over the barrier creating the effect of an elevated source and enhancing vertical dispersion of the plume. The deceleration and the deflection of the initial flow by the noise barrier force the plume to disperse horizontally. A highly turbulent shear zone characterized by slow velocities and a re-circulation cavity is created in the lee of the barrier which further enhances the dispersion; this mixes ambient air with the pollutants downwind behind the barrier.Bowker, G.E., Baldauf, R., Isakov, V., Khlystov, A., and Petersen, W. (2007). The effects of roadside structures on the transport and dispersion of ultrafine particles from highways. Atmos. Environ. 41, 8128–8139


See also

* Health effects from noise * Noise control * Safety barrier * Soundproofing


References


External links

* {{Authority control Environmental engineering Noise pollution Noise control Road infrastructure Acoustics Sound