
The electromagnetic spectrum is the full range of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, organized by
frequency or
wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are:
radio waves,
microwaves,
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
,
visible light,
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
,
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s, and
gamma rays. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications.
Radio waves, at the low-frequency end of the spectrum, have the lowest
photon energy and the longest wavelengths—thousands of
kilometers, or more. They can be emitted and received by
antennas, and pass through the atmosphere, foliage, and most building materials.
Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
. Gamma rays, X-rays, and extreme ultraviolet rays are called
ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
because their high photon energy is able to
ionize atoms, causing chemical reactions. Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms.
Throughout most of the electromagnetic spectrum,
spectroscopy
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Spectro ...
can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength. Spectroscopy is used to study the interactions of electromagnetic waves with matter.
History and discovery
Humans have always been aware of
visible light and
radiant heat but for most of history it was not known that these phenomena were connected or were representatives of a more extensive principle. The
ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including
reflection and
refraction
In physics, refraction is the redirection of a wave as it passes from one transmission medium, medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commo ...
. Light was intensively studied from the beginning of the 17th century leading to the invention of important instruments like the
telescope
A telescope is a device used to observe distant objects by their emission, Absorption (electromagnetic radiation), absorption, or Reflection (physics), reflection of electromagnetic radiation. Originally, it was an optical instrument using len ...
and
microscope
A microscope () is a laboratory equipment, laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic ...
.
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
was the first to use the term ''
spectrum'' for the range of colours that white light could be split into with a
prism. Starting in 1666, Newton showed that these colours were intrinsic to light and could be recombined into white light. A debate arose over whether light had a wave nature or a particle nature with
René Descartes
René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
,
Robert Hooke and
Christiaan Huygens
Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution ...
favouring a wave description and Newton favouring a particle description. Huygens in particular had a well developed theory from which he was able to derive the laws of reflection and refraction. Around 1801,
Thomas Young measured the
wavelength of a light beam with his
two-slit experiment thus conclusively demonstrating that light was a wave.
In 1800,
William Herschel discovered
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation. He was studying the temperature of different colours by moving a thermometer through light split by a prism. He noticed that the highest temperature was beyond red. He theorized that this temperature change was due to "calorific rays", a type of light ray that could not be seen. The next year,
Johann Ritter, working at the other end of the spectrum, noticed what he called "chemical rays" (invisible light rays that induced certain chemical reactions). These behaved similarly to visible violet light rays, but were beyond them in the spectrum. They were later renamed
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
radiation.
The study of
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
began in 1820 when
Hans Christian Ørsted discovered that
electric current
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
s produce
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s (
Oersted's law). Light was first linked to electromagnetism in 1845, when
Michael Faraday noticed that the
polarization of light traveling through a transparent material responded to a magnetic field (see
Faraday effect). During the 1860s,
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
developed four partial
differential equations (
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
) for the
electromagnetic field. Two of these equations predicted the possibility and behavior of waves in the field. Analyzing the speed of these theoretical waves, Maxwell realized that they must travel at a speed that was about the known
speed of light. This startling coincidence in value led Maxwell to make the inference that light itself is a type of electromagnetic wave. Maxwell's equations predicted an infinite range of frequencies of
electromagnetic waves
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ran ...
, all traveling at the speed of light. This was the first indication of the existence of the entire electromagnetic spectrum.
Maxwell's predicted waves included waves at very low frequencies compared to infrared, which in theory might be created by oscillating charges in an ordinary
electrical circuit
An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e. ...
of a certain type. Attempting to prove Maxwell's equations and detect such low frequency electromagnetic radiation, in 1886, the physicist
Heinrich Hertz
Heinrich Rudolf Hertz (; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism.
Biography
Heinri ...
built an apparatus to generate and detect what are now called
radio waves. Hertz found the waves and was able to infer (by measuring their wavelength and multiplying it by their frequency) that they traveled at the speed of light. Hertz also demonstrated that the new radiation could be both reflected and refracted by various
dielectric media, in the same manner as light. For example, Hertz was able to focus the waves using a lens made of tree
resin. In a later experiment, Hertz similarly produced and measured the properties of
microwaves. These new types of waves paved the way for inventions such as the
wireless telegraph and the
radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
.
In 1895,
Wilhelm Röntgen noticed a new type of radiation emitted during an experiment with an
evacuated tube subjected to a
high voltage
High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant sp ...
. He called this radiation "
x-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s" and found that they were able to travel through parts of the human body but were reflected or stopped by denser matter such as bones. Before long, many uses were found for this
radiography.
The last portion of the electromagnetic spectrum was filled in with the discovery of
gamma rays. In 1900,
Paul Villard was studying the radioactive emissions of
radium when he identified a new type of radiation that he at first thought consisted of particles similar to known
alpha
Alpha (uppercase , lowercase ) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter ''aleph'' , whose name comes from the West Semitic word for ' ...
and
beta particles, but with the power of being far more penetrating than either. However, in 1910, British physicist
William Henry Bragg demonstrated that gamma rays are electromagnetic radiation, not particles, and in 1914,
Ernest Rutherford (who had named them gamma rays in 1903 when he realized that they were fundamentally different from charged alpha and beta particles) and
Edward Andrade measured their wavelengths, and found that gamma rays were similar to X-rays, but with shorter wavelengths.
The wave-particle debate was rekindled in 1901 when
Max Planck discovered that light is absorbed only in discrete "
quanta", now called
photons, implying that light has a particle nature. This idea was made explicit by
Albert Einstein in 1905, but never accepted by Planck and many other contemporaries. The modern position of science is that electromagnetic radiation has both a wave and a particle nature, the
wave-particle duality. The contradictions arising from this position are still being debated by scientists and philosophers.
Range
Electromagnetic waves are typically described by any of the following three physical properties: the
frequency ''f'',
wavelength λ, or
photon energy ''E''. Frequencies observed in astronomy range from (1
GeV gamma rays) down to the local
plasma frequency of the ionized
interstellar medium (~1 kHz). Wavelength is inversely proportional to the wave frequency,
so gamma rays have very short wavelengths that are fractions of the size of
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s, whereas wavelengths on the opposite end of the spectrum can be indefinitely long. Photon energy is directly proportional to the wave frequency, so gamma ray photons have the highest energy (around a billion
electron volts), while radio wave photons have very low energy (around a
femtoelectronvolt). These relations are illustrated by the following equations:
:
where:
* ''c'' is the
speed of light in vacuum
* ''h'' is the
Planck constant.
Whenever electromagnetic waves travel in a
medium with
matter, their wavelength is decreased. Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the ''vacuum wavelength'', although this is not always explicitly stated.
Generally, electromagnetic radiation is classified by wavelength into
radio wave,
microwave,
infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
,
visible light,
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
,
X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s and
gamma rays. The behavior of EM radiation depends on its wavelength. When EM radiation interacts with single atoms and
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s, its behavior also depends on the amount of energy per quantum (photon) it carries.
Spectroscopy
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Spectro ...
can detect a much wider region of the EM spectrum than the visible wavelength range of 400
nm to 700 nm in a vacuum. A common laboratory spectroscope can detect wavelengths from 2 nm to 2500 nm.
Detailed information about the physical properties of objects, gases, or even stars can be obtained from this type of device. Spectroscopes are widely used in
astrophysics. For example, many
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atoms
emit a
radio wave photon that has a wavelength of 21.12 cm. Also, frequencies of 30
Hz and below can be produced by and are important in the study of certain stellar nebulae and frequencies as high as have been detected from astrophysical sources.
Regions

The types of electromagnetic radiation are broadly classified into the following classes (regions, bands or types):
# Gamma radiation
# X-ray radiation
# Ultraviolet radiation
# Visible light (light that humans can see)
# Infrared radiation
# Microwave radiation
# Radio waves
This classification goes in the increasing order of wavelength, which is characteristic of the type of radiation.
There are no precisely defined boundaries between the bands of the electromagnetic spectrum; rather they fade into each other like the bands in a
rainbow. Radiation of each frequency and wavelength (or in each band) has a mix of properties of the two regions of the spectrum that bound it. For example, red light resembles infrared radiation, in that it can excite and add energy to some
chemical bond
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
s and indeed must do so to power the chemical mechanisms responsible for
photosynthesis and the working of the
visual system
The visual system is the physiological basis of visual perception (the ability to perception, detect and process light). The system detects, phototransduction, transduces and interprets information concerning light within the visible range to ...
.
In atomic and nuclear physics, the distinction between X-rays and gamma rays is based on sources: the photons generated from
nuclear decay or other nuclear and subnuclear/particle process are termed gamma rays, whereas X-rays are generated by
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
ic transitions involving energetically deep inner atomic electrons. Electronic transitions in
muonic atoms transitions are also said to produce X-rays. In astrophysics, energies below 100keV are called X-rays and higher energies are gamma rays.
The region of the spectrum where electromagnetic radiation is observed may differ from the region it was emitted in due to relative velocity of the source and observer, (the
Doppler shift), relative gravitational potential (
gravitational redshift), or expansion of the universe (
cosmological redshift).
[ For example, the ]cosmic microwave background
The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
, relic blackbody radiation from the era of recombination, started out at energies around 1eV, but as has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers on Earth.
Rationale for names
Electromagnetic radiation interacts with matter in different ways across the spectrum. These types of interaction are so different that historically different names have been applied to different parts of the spectrum, as though these were different types of radiation. Thus, although these "different kinds" of electromagnetic radiation form a quantitatively continuous spectrum of frequencies and wavelengths, the spectrum remains divided for practical reasons arising from these qualitative interaction differences.
Types of radiation
Radio waves
Radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
waves are emitted and received by antennas, which consist of conductors such as metal rod resonators. In artificial generation of radio waves, an electronic device called a transmitter
In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna (radio), antenna with the purpose of sig ...
generates an alternating electric current
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
which is applied to an antenna. The oscillating electrons in the antenna generate oscillating electric
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s that radiate away from the antenna as radio waves. In reception of radio waves, the oscillating electric and magnetic fields of a radio wave couple to the electrons in an antenna, pushing them back and forth, creating oscillating currents which are applied to a radio receiver. Earth's atmosphere is mainly transparent to radio waves, except for layers of charged particles in the ionosphere which can reflect certain frequencies.
Radio waves are extremely widely used to transmit information across distances in radio communication
Radio is the technology of telecommunication, communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transm ...
systems such as radio broadcasting
Radio broadcasting is the broadcasting of audio signal, audio (sound), sometimes with related metadata, by radio waves to radio receivers belonging to a public audience. In terrestrial radio broadcasting the radio waves are broadcast by a lan ...
, television
Television (TV) is a telecommunication medium for transmitting moving images and sound. Additionally, the term can refer to a physical television set rather than the medium of transmission. Television is a mass medium for advertising, ...
, two way radios, mobile phone
A mobile phone or cell phone is a portable telephone that allows users to make and receive calls over a radio frequency link while moving within a designated telephone service area, unlike fixed-location phones ( landline phones). This rad ...
s, communication satellites, and wireless networking. In a radio communication system, a radio frequency current is modulated with an information-bearing signal
A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology.
In ...
in a transmitter by varying either the amplitude, frequency or phase, and applied to an antenna. The radio waves carry the information across space to a receiver, where they are received by an antenna and the information extracted by demodulation in the receiver. Radio waves are also used for navigation in systems like Global Positioning System (GPS) and navigational beacons, and locating distant objects in radiolocation and radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
. They are also used for remote control, and for industrial heating.
The use of the radio spectrum is strictly regulated by governments, coordinated by the International Telecommunication Union
The International Telecommunication Union (ITU)In the other common languages of the ITU:
*
* is a list of specialized agencies of the United Nations, specialized agency of the United Nations responsible for many matters related to information ...
(ITU) which allocates frequencies to different users for different uses.
Microwaves
Microwaves are radio waves of short wavelength, from about 10 centimeters to one millimeter, in the SHF and EHF frequency bands. Microwave energy is produced with klystron and magnetron
The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave oven, microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of ...
tubes, and with solid state devices such as Gunn and IMPATT diodes. Although they are emitted and absorbed by short antennas, they are also absorbed by polar molecules, coupling to vibrational and rotational modes, resulting in bulk heating. Unlike higher frequency waves such as infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
and visible light which are absorbed mainly at surfaces, microwaves can penetrate into materials and deposit their energy below the surface. This effect is used to heat food in microwave ovens, and for industrial heating and medical diathermy. Microwaves are the main wavelengths used in radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
, and are used for satellite communication, and wireless networking technologies such as Wi-Fi
Wi-Fi () is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for Wireless LAN, local area networking of devices and Internet access, allowing nearby digital devices to exchange data by ...
. The copper cables ( transmission lines) which are used to carry lower-frequency radio waves to antennas have excessive power losses at microwave frequencies, and metal pipes called waveguides are used to carry them. Although at the low end of the band the atmosphere is mainly transparent, at the upper end of the band absorption of microwaves by atmospheric gases limits practical propagation distances to a few kilometers.
Terahertz radiation or sub-millimeter radiation is a region of the spectrum from about 100 GHz to 30 terahertz (THz) between microwaves and far infrared which can be regarded as belonging to either band. Until recently, the range was rarely studied and few sources existed for microwave energy in the so-called '' terahertz gap'', but applications such as imaging and communications are now appearing. Scientists are also looking to apply terahertz technology in the armed forces, where high-frequency waves might be directed at enemy troops to incapacitate their electronic equipment. Terahertz radiation is strongly absorbed by atmospheric gases, making this frequency range useless for long-distance communication.
Infrared radiation
The infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
part of the electromagnetic spectrum covers the range from roughly 300 GHz to 400 THz (1 mm – 750 nm). It can be divided into three parts:
* Far-infrared, from 300 GHz to 30 THz (1 mm – 10 μm). The lower part of this range may also be called microwaves or terahertz waves. This radiation is typically absorbed by so-called rotational modes in gas-phase molecules, by molecular motions in liquids, and by phonons in solids. The water in Earth's atmosphere absorbs so strongly in this range that it renders the atmosphere in effect opaque. However, there are certain wavelength ranges ("windows") within the opaque range that allow partial transmission, and can be used for astronomy. The wavelength range from approximately 200 μm up to a few mm is often referred to as Submillimetre astronomy, reserving far infrared for wavelengths below 200 μm.
* Mid-infrared, from 30 THz to 120 THz (10–2.5 μm). Hot objects ( black-body radiators) can radiate strongly in this range, and human skin at normal body temperature radiates strongly at the lower end of this region. This radiation is absorbed by molecular vibrations, where the different atoms in a molecule vibrate around their equilibrium positions. This range is sometimes called the ''fingerprint region'', since the mid-infrared absorption spectrum of a compound is very specific for that compound.
* Near-infrared, from 120 THz to 400 THz (2,500–750 nm). Physical processes that are relevant for this range are similar to those for visible light. The highest frequencies in this region can be detected directly by some types of photographic film, and by many types of solid state image sensor An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they refraction, pass through or reflection (physics), reflect off objects) into s ...
s for infrared photography and videography.
Visible light
Above infrared in frequency comes visible light. The Sun emits its peak power in the visible region, although integrating the entire emission power spectrum through all wavelengths shows that the Sun emits slightly more infrared than visible light. By definition, visible light is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis. The light that excites the human visual system
The visual system is the physiological basis of visual perception (the ability to perception, detect and process light). The system detects, phototransduction, transduces and interprets information concerning light within the visible range to ...
is a very small portion of the electromagnetic spectrum. A rainbow shows the optical (visible) part of the electromagnetic spectrum; infrared (if it could be seen) would be located just beyond the red side of the rainbow whilst ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
would appear just beyond the opposite violet end.
Electromagnetic radiation with a wavelength between 380 nm and 760 nm (400–790 terahertz) is detected by the human eye and perceived as visible light. Other wavelengths, especially near infrared (longer than 760 nm) and ultraviolet (shorter than 380 nm) are also sometimes referred to as light, especially when the visibility to humans is not relevant. White light is a combination of lights of different wavelengths in the visible spectrum. Passing white light through a prism splits it up into the several colours of light observed in the visible spectrum between 400 nm and 780 nm.
If radiation having a frequency in the visible region of the EM spectrum reflects off an object, say, a bowl of fruit, and then strikes the eyes, this results in visual perception
Visual perception is the ability to detect light and use it to form an image of the surrounding Biophysical environment, environment. Photodetection without image formation is classified as ''light sensing''. In most vertebrates, visual percept ...
of the scene. The brain's visual system processes the multitude of reflected frequencies into different shades and hues, and through this insufficiently understood psychophysical phenomenon, most people perceive a bowl of fruit.
At most wavelengths, however, the information carried by electromagnetic radiation is not directly detected by human senses. Natural sources produce EM radiation across the spectrum, and technology can also manipulate a broad range of wavelengths. Optical fiber transmits light that, although not necessarily in the visible part of the spectrum (it is usually infrared), can carry information. The modulation is similar to that used with radio waves.
Ultraviolet radiation
Next in frequency comes ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
(UV). In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum
The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light).
The optica ...
and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC.
UV is the lowest energy range energetic enough to ionize atoms, separating electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s from them, and thus causing chemical reaction
A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s. UV, X-rays, and gamma rays are thus collectively called ''ionizing radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
''; exposure to them can damage living tissue. UV can also cause substances to glow with visible light; this is called ''fluorescence
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
''. UV fluorescence is used by forensics to detect any evidence like blood and urine, that is produced by a crime scene. Also UV fluorescence is used to detect counterfeit money and IDs, as they are laced with material that can glow under UV.
At the middle range of UV, UV rays cannot ionize but can break chemical bonds, making molecules unusually reactive. Sunburn, for example, is caused by the disruptive effects of middle range UV radiation on skin cells, which is the main cause of skin cancer. UV rays in the middle range can irreparably damage the complex DNA molecules in the cells producing thymine dimers making it a very potent mutagen. Due to skin cancer caused by UV, the sunscreen industry was invented to combat UV damage. Mid UV wavelengths are called UVB and UVB lights such as germicidal lamps are used to kill germs and also to sterilize water.
The Sun emits UV radiation (about 10% of its total power), including extremely short wavelength UV that could potentially destroy most life on land (ocean water would provide some protection for life there). However, most of the Sun's damaging UV wavelengths are absorbed by the atmosphere before they reach the surface. The higher energy (shortest wavelength) ranges of UV (called "vacuum UV") are absorbed by nitrogen and, at longer wavelengths, by simple diatomic oxygen in the air. Most of the UV in the mid-range of energy is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower energy part of which is too long for ordinary dioxygen in air to absorb. This leaves less than 3% of sunlight at sea level in UV, with all of this remainder at the lower energies. The remainder is UV-A, along with some UV-B. The very lowest energy range of UV between 315 nm and visible light (called UV-A) is not blocked well by the atmosphere, but does not cause sunburn and does less biological damage. However, it is not harmless and does create oxygen radicals, mutations and skin damage.
X-rays
After UV come X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s, which, like the upper ranges of UV are also ionizing. However, due to their higher energies, X-rays can also interact with matter by means of the Compton effect. Hard X-rays have shorter wavelengths than soft X-rays and as they can pass through many substances with little absorption, they can be used to 'see through' objects with 'thicknesses' less than that equivalent to a few meters of water. One notable use is diagnostic X-ray imaging in medicine (a process known as radiography). X-rays are useful as probes in high-energy physics. In astronomy, the accretion disks around neutron star
A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s and black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s emit X-rays, enabling studies of these phenomena. X-rays are also emitted by stellar corona
In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as so ...
and are strongly emitted by some types of nebulae. However, X-ray telescopes must be placed outside the Earth's atmosphere to see astronomical X-rays, since the great depth of the atmosphere of Earth
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather ...
is opaque to X-rays (with areal density of 1000 g/cm2), equivalent to 10 meters thickness of water. This is an amount sufficient to block almost all astronomical X-rays (and also astronomical gamma rays—see below).
Gamma rays
After hard X-rays come gamma rays, which were discovered by Paul Ulrich Villard in 1900. These are the most energetic photons, having no defined lower limit to their wavelength. In astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
they are valuable for studying high-energy objects or regions, however as with X-rays this can only be done with telescopes outside the Earth's atmosphere. Gamma rays are used experimentally by physicists for their penetrating ability and are produced by a number of radioisotopes. They are used for irradiation of foods and seeds for sterilization, and in medicine they are occasionally used in radiation cancer therapy.Uses of Electromagnetic Waves , gcse-revision, physics, waves, uses-electromagnetic-waves , Revision World
/ref> More commonly, gamma rays are used for diagnostic imaging in nuclear medicine, an example being PET scans. The wavelength of gamma rays can be measured with high accuracy through the effects of Compton scattering.
See also
Notes and references
External links
Australian Radiofrequency Spectrum Allocations Chart
(from Australian Communications and Media Authority)
Canadian Table of Frequency Allocations
(from Industry Canada)
U.S. Frequency Allocation Chart
– Covering the range 3 kHz to 300 GHz (from Department of Commerce)
UK frequency allocation table
(from Ofcom
The Office of Communications, commonly known as Ofcom, is the government-approved regulatory and competition authority for the broadcasting, internet, telecommunications and mail, postal industries of the United Kingdom.
Ofcom has wide-rang ...
, which inherited the Radiocommunications Agency's duties, pdf format)
Flash EM Spectrum Presentation / Tool
– Very complete and customizable.
Poster "Electromagnetic Radiation Spectrum"
(992 kB)
{{Portal bar, Electronics, Telecommunication
Waves