Solar Eclipse Of June 1, 2087
   HOME

TheInfoList



OR:

A partial
solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
will occur at the Moon's
descending node An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference ...
of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A
solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The partial solar eclipse will be visible for parts of New Zealand.


Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.


Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.


Related eclipses


Eclipses in 2087

* A partial solar eclipse on May 2. * A total lunar eclipse on May 17. * A partial solar eclipse on June 1. * A partial solar eclipse on October 26. * A total lunar eclipse on November 10.


Metonic

* Preceded by:
Solar eclipse of August 13, 2083 A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the imag ...


Tzolkinex

* Followed by:
Solar eclipse of July 12, 2094 A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the imag ...


Half-Saros

* Followed by: Lunar eclipse of June 6, 2096


Tritos

* Preceded by:
Solar eclipse of July 1, 2076 A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the im ...


Solar Saros 158

* Preceded by: Solar eclipse of May 20, 2069 * Followed by: Solar eclipse of June 12, 2105


Inex

* Preceded by:
Solar eclipse of June 21, 2058 A partial solar eclipse will occur at the Moon's ascending node of orbit between Thursday, June 20 and Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or ...


Triad

* Preceded by: Solar eclipse of July 31, 2000 * Followed by: Solar eclipse of April 1, 2174


Solar eclipses of 2083–2087


Saros 158

This eclipse is a part of Saros series 158, repeating every 18 years, 11 days, and containing 70 events. The series will start with a partial solar eclipse on May 20, 2069. It contains total eclipses from August 5, 2195 through August 13, 2808; hybrid eclipses on August 24, 2826 and September 3, 2844; and annular eclipses from September 15, 2862 through February 27, 3133. The series ends at member 70 as a partial eclipse on June 16, 3313. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth. The longest duration of totality will be produced by member 10 at 4 minutes, 43 seconds on August 28, 2231, and the longest duration of annularity will be produced by member 57 at 6 minutes, 7 seconds on January 25, 3079. All eclipses in this series occur at the Moon’s
descending node An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference ...
of orbit.


Metonic series


Tritos series


Inex series


References


External links

{{Solar eclipses 2087 6 1 2087 6 1 2087 6 1 2087 in science